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Preface

In publishing this English edition I have tried to make a rather extensive
revision. Most of the mistakes and insufficiencies in the original edition
have, | hope, been corrected, and some theorems have been improved.
Some topics have been added in the form of Appendices to individual
sections. Only Appendices A, B and C are from the original. The final
section, §33, of the original edition was entitled ‘Kunz’ Theorems’
and did not substantially differ from a section in the second edition of
my previous book Commutative Algebra (Benjamin, 2nd edn 1980), so I
have replaced it by the present §33. The bibliography at the end of
the book has been considerably enlarged, although it is obviously
impossibie to do justice to all of the ever-increasing literature.

Dr Miles Reid has done excellent work of translation, He also pointed
out some errors and proposed some improvements. Through his efforts this
new cdition has become, I believe, more readable than the original. To him,
and to the staff of Cambridge University Press and Kyoritsu Shuppan Co.,
Tokyo, who cooperated to make the publication of this English edition
possible, I express here my heartfelt gratitude.

Hideyuki Matsumura
Nagoya



N RN W R .

-~ W

14
15

16
17
18

19
20
21

Contents

Preface : vii
Introduction ix
Conventions and terminology xiii
Commutative rings and modules 1
Ideals 1
Modules 6
Chain conditions 14
Prime ideals 20
Localisation and Spec of a ring 20
The Hilbert Nullstellensatz and first steps in dimension theory 30
Associated primes and primary decomposition 37
Appendix to §6. Secondary representations of a module 42
Properties of extension rings 45
Flatness 45
Appendix to §7. Pure submodules 53
Completion and the Artin-Rees lemma 55
Integral extensions 64
Valuation rings 71
General valuations !
DVRs and Dedekind rings 78
Krull rings 86
Dimension theory 92
Graded rings, the Hilbert function and the Samuel function 92
Appendix to §13. Determinantal ideals 103
Systems of parameters and multiplicity 104
The dimension of extension rings 116
Regular sequences 123
Regular sequences and the Koszul complex 123
Cohen-Macaulay rings 133
Gorenstein rings 139
Regular rings 153
Regular rings 153
UFDs 161

Complete intersection rings 169



vi

22
23
24

25
26
27

10
28
29
30

11
31
32
33

Contents

Flatness revisited

The local flatness criterion

Flatness and fibres

Generic freeness and open loci results

Derivations

Derivations and differentials

Separability

Higher derivations

I-smoothness

I-smoothness

The structure theorems for complete local rings
Connections with derivations

Applications of complete local rings
Chains of prime ideals

The formal fibre

Some other applications

Appendix A. Tensor products, direct and inverse limits
Appendix B. Some homological algebra

Appendix C. The exterior algebra

Solutions and hints for exercises

References

Index

173
173
178
185

190
190
198
207

213
213
223
230

246
246
255
261

266
274
283
287
298
315



Introduction

In addition to being a beautiful and deep theory in its own right,
commutative ring theory is important as a foundation for algebraic
geometry and complex analytic geometry. Let us start with a historical
survey of its development.

The most basic commutative rings are the ring Z of rational integers, and
the polynomial rings over a field. Z is a principal ideal ring, and so is too
simple to be ring-theoretically very interesting, but it was in the course of
studying its extensions, the rings of integers of algebraic number fields, that
Dedekind first introduced the notion of an ideal in the 1870s. For it was
realised that only when prime ideals are used in place of prime numbers do
we obtain the natural generalisation of the number theory of Z.

Meanwhile, in the second half of the 19th century, polynomial rings
gradually came to be studied both from the point of view of algebraic
geometry and of invariant theory. In his famous papers of the 1890s on
invariants, Hilbert proved that ideals in polynomial rings are finitely
generated, as well as other fundamental theorems. After the turn of the
present century had seen the deep researches of Lasker and Macaulay on
primary decomposition of polynomial ideals came the advent of the age of
abstract algebra. A forerunner of the abstract treatment of commutative
ring theory was the Japanese Shozo Sono (On congruences, 1-1V, Mem.
Coll. Sci. Kyoto, 2 (1917), 3(1918-19)); in particular he succeeded in giving
an axiomatic characterisation of Dedekind rings. Shortly after this Emmy
Noether discovered that primary decomposition of ideals is a consequence
of the ascending chain condition (1921), and gave a different system of
axioms for Dedekind rings (1927), in work which was to have a decisive
influence on the direction of subsequent development of commutative ring
theory. The central position occupied by Noetherian rings in commutative
ring theory became evident from her work.

However, the credit for raising abstract commutative ring theory to a
substantial branch of science belongs in the first instance to Krull (1899—
1970). In the 1920s and 30s he established the dimension theory of
Noetherian rings, introduced the methods of localisation and completion,
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and the notion of a regular local ring, and went beyond the framework of
Noetherian rings to create the theory of general valuation rings and Krull
rings. The contribution of Akizuki in the 1930s was also considerable; in
particular, a counter-example, which he obtained after a year’s hard
struggle, of an integral domain whose integral closure is not finite as a
module was to become the model for many subsequent counter-examples.

In the 1940s Krull’s theory was applied to algebraic geometry by
Chevalley and Zariski, with remarkable success. Zariski applied general
valuation theory to the resolution of singularities and the theory of
birational transformations, and used the notion of regular local ring to give
an algebraic formulation of the theory of simple (non-singular) point of a
variety. Chevalley initiated the theory of multiplicities of local rings, and
applied it to the computation of intersection multiplicities of varieties.
Meanwhile, Zariski’s student I.S. Cohen proved the structure theorem for
complete local rings [1], underlining the importance of completion.

The 1950s opened with the profound work of Zariski on the problem of
whether the completion of a normal local ring remains normal (Sur la
normalité analytique des variétés normales, Ann. Inst. Fourier 2 (1950)),
taking Noetherian ring theory from general theory deeper into precise
structure theorems. Multiplicity theory was given new foundations by
Samuel and Nagata, and became one of the powerful tools in the theory of
local rings. Nagata, who was the most outstanding research worker of the
1950s, also created the theory of Hensel rings, constructed examples of non-
catenary Noetherian rings and counter-examples to Hilbert’s 14th prob-
lem, and initiated the theory of Nagata rings (which he called pseudo-
geometric rings). Y. Mori carried out a deep study of the integral closure
of Noetherian integral domains.

However, in contrast to Nagata and Mori’s work following the Krull
tradition, there was at the same time a new and completely different
movement, the introduction of homological algebra into commutative ring
theory by Auslander and Buchsbaum in the USA, Northcott and Rees in
Britain, and Serre in France, among others. In this direction, the theory of
regular sequences and depth appeared, giving a new treatment of Cohen—
Macaulay rings, and through the homological characterisation of regular
local rings there was dramatic progress in the theory of regular local rings.

The early 1960s saw the publication of Bourbaki’s Algébre commutative,
which emphasised flatness, and treated primary decomposition from a new
angle. However, without doubt, the most characteristic aspect of this
decade was the activity of Grothendieck. His scheme theory created a
fusion of commutative ring theory and algebraic geometry, and opened up
ways of applying geometric methods in ring theory. His local cohomology



Introduction X1

is an example of this kind of approach, and has become one of the
indispensable methods of modern commutative ring theory. He also
initiated the theory of Gorenstein rings. In addition, his systematic
development, in Chapter IV of EGA, of the study of formal fibres, and the
theory of excellent rings arising out of it, can be seen as a continuation and a
final conclusion of the work of Zariski and Nagata in the 1950s.

In the 1960s commutative ring theory was to receive another two
important gifts from algebraic geometry. Hironaka’s great work on the
resolution of singularities [1] contained an extremely original piece of
work within the ideal theory of local rings, the ring-theoretical significance
of which is gradually being understood. The theorem on resolution of
singularities has itself recently been used by Rotthaus in the study of
excellent rings. Secondly, in 1969 M. Artin proved his famous approxim-
ation theorem; roughly speaking, this states that if a system of simultaneous
algebraic equations over a Hensel local ring A4 has a solution in the
completion A, then there exist arbitrarily close solutions in A itself. This
theorem has a wide variety of applications both in algebraic geometry and
in ring theory. A new homology theory of commutative rings constructed
by M. André and Quillen is a further important achievement of the 1960s.

The 1970s was a period of vigorous research in homological directions by
many workers. Buchsbaum, Eisenbud, Northcott and others made detailed
studies of properties of complexes, while techniques discovered by Peskine
and Szpiro 1] and Hochster [H] made ingenious usc of the Frobenius
map and the Artin approximation theorem. Cohen-Macaulay rings,
Gorenstein rings, and most recently Buchsbaum rings have been studied in
very concrete ways by Hochster, Stanley, Kei-ichi Watanabe and S. Goto
among others. On the other hand, classical ideal theory has shown no sign
of dying off, with Ratliff and Rotthaus obtaining extremely deep results.

To give the three top theorems of commutative ring theory in order of
importance, I have not much doubt that Krull’s dimension theorem
(Theorem 13.5) has pride of place. Next perhaps is 1.S. Cohen’s structure
theorem for complete local rings (Theorems 28.3, 29.3 and 29.4). The fact
that a complete local ring can be expressed as a quotient of a well-
understood ring, the formal power series ring over a field or a discrete
valuation ring, is something to feel extremely grateful for. As a third, I
would give Serre’s characterisation of a regular local ring (Theorem 19.2);
this grasps the essence of regular local rings, and is also an important
meeting-point of ideal theory and homological algebra.

This book is written as a genuine textbook in commutative algebra, and
is as self-contained as possible. It was also the intention to give some
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thought to the applications to algebraic geometry. However, both for
reasons of space and limited ability on the part of the author, we are not
able to touch on local cohomology, or on the many subsequent results of
the cohomological work of the 1970s. There are readable accounts of these
subjects in {G6] and [H], and it would be useful to read these after this
book.

This book was originally to have been written by my distinguished friend
Professor Masao Narita, but since his tragic early death through illness, I
have taken over from him. Professor Narita was an exact contemporary of
mine, and had been a close friend ever since we met at the age of 24. Well-
respected and popular with all, he was a man of warm character, and it was
a sad loss when he was prematurely called to a better place while still in his
forties. Believing that, had he written the book, he would have included
topics which were characteristic of him, UFDs, Picard groups, and so on,
I have used part of his lectures in §20 as a memorial to him. I could
wish for nothing better than to present this book to Professor Narita and to
hear his criticism.

Hideyuki Matsumura
Nagoya



Conventions and terminology

(1) Some basic definitions are given in Appendixes A—-C. The index contains
references to all definitions, including those of the appendixes.

(2) In this book, by a ring we always understand a commutative ring with
unit; ring homomorphisms 4 — B are assumed to take the unit element
of A into the unit element of B. When we say that A is a subring of B
it is understood that the unit elements of 4 and B coincide.

(3) If f:A— B is a ring homomorphism and J is an ideal of B, then
f~(J) is an ideal of B, and we denote this by AN J; if A is a subring of
Band f is the inclusion map then this is the same as the usual set-theoretic
notion of intersection. In general this is not true, but confusion does not
arise.

Moreover, if I is an ideal of A, we will write IB for the ideal f(I)B of B.

(4) If Ais aring and a,,...,a, elements of A4, the ideal of A generated by
these is written in any of the following ways: a; A + a,A + - + a,A, Y a;A,
(a4,...,a)or(ay,...,a,)A.

(5) The sign < is used for inclusion of a subset, including the possibility of
equality; in [M] the sign < was used for this purpose. However, when we
say that ‘M, < M, = - is an ascending chain’, M, ¢ M, < -+ is intended.

{6) When we say that R is a ring of characteristic p, or write char R = p, we
always mean that p > 0 is a prime number.

(7) In the exercises we generally omit the instruction ‘prove that’. Solutions
or hints are provided at the end of the book for most of the exercises. Many of
the exercises are intended to supplement the material of the main text, so it
is advisable at least to glance through them.

(8) The numbering Theorem 7.1 refers to Theorem 1 of §7; within
one paragraph we usually just refer to Theorem 1, omitting the section
number.
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Commutative rings and modules

This chapter discusses the very basic definitions and results.

§1 centres around the question of the existence of prime ideals. In §2
we treat Nakayama’s lemma, modules over local rings and modules of
finite presentation; we give a complete proof, following Kaplansky, of the
fact that a projective module over a local ring is free (Theorem 2.5),
although, since we will not make any subsequent use of this in the infinitely
generated case, the reader may pass over it. In §3 we give a detailed
treatment of finiteness conditions in the form of Emmy Noether’s chain
condition, discussing among other things Akizuki’s theorem, L.S. Cohen’s
theorem and Formanek’s proof of the Eakin-Nagata theorem.

1 Ideals

If A is a ring and I an ideal of A, it is often important to consider
the residue class ring A4/I. Set A= A/I, and write f:4 —> A for the
natural map; then ideals J of 4 and ideals J = f ~!(J) of A containing I are
in one-to-one correspondence, with J=J/I and A/J ~ A/J. Hence, when
we just want to think about ideals of A containing I, it is convenient to
shift attention to A4/I. (If I is any ideal of A then f(I') is an ideal of A,
with f~Y(f(I'))=1+1T,and f(I''=(I+1I)/L)

A is itself an ideal of A4, often written (1) since it is generated by the
identity element 1. An ideal distinct from (1) is called a proper ideal. An
element aeA which has an inverse in A (that is, for which there exists
a'eA with aa’ = 1) is called a unit (or invertible element) of A; this holds
if and only if the principal ideal (a) is equal to (1). If a is a unit and x is
nilpotent then a + x is again a unit: indeed, if x" =0 then setting y =
~a~'x, we have y" = 0; now

(I=»A+y+-+yH=1-y"=1,
so that a + x = a (1 — y) has an inverse.

In a ring A we are allowed to have 1 =0, but if this happens then it
follows that a=1-a=0-a=0 for every acA, so that A has only one
element O; in this case we write A = 0. In definitions and theorems about

1
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rings, it may sometimes happen that the condition A #0 is omitted even
when it is actually necessary. A ring A is an integral domain (or simply a
domain) if A #0, and if A has no zero-divisors other than 0. If 4 is an
integral domain and every non-zero element of 4 is a unit then A is a
field. A field is characterised by the fact that it is a ring having exactly
two ideals (0) and (1).

An ideal which is maximal among all proper ideals is called a maximal
ideal; an ideal m of A is maximal if and only if A/m is a field. Given a
proper ideal I, let M be the set of ideals containing I and not containing
1, ordered by inclusion; then Zorn’s lemma can be applied to M. Indeed,
IeM so that M is non-empty, and if L = M is a totally ordered subset
then the union of all the ideals belonging to L is an ideal of 4 and obviously
belongs to M, so is the least upper bound of L in M. Thus by Zorn’s
lemma M has got a maximal element. This proves the following theorem.

Theorem 1.1. If I is a proper ideal then there exists at least one maximal
ideal containing 1.

An ideal P of A for which A/P is an integral domain is called a prime
ideal. In other words, P is prime if it satisfies

(i) P#A and (i) x,y¢P=xy¢P for x,yeA
A field is an integral domain, so that a maximal ideal is prime.

If I and J are ideals and P a prime ideal, then

I¢P, JEP=>1JEP.

Indeed, taking xel and yeJ with x, y¢ P, we have xyelJ but xy¢P.

A subset S of A is multiplicative if it satisfies

(i) x,yeS=xyeS, and (ii) 1€S;
(here condition (ii) is not crucial: given a subset § satisfying (i), there will
usually not be any essential change on replacing S by Su{1}). If I is
an ideal disjoint from S, then exactly as in the proof of Theorem 1 we see
that the set of ideals containing I and disjoint from S has a maximal
element. If P is an ideal which is maximal among ideals disjoint from §
then P is prime. For if x¢P, y¢P, then since P + x4 and P+ yA4 both
meet S, the product (P + xA) (P + yA) also meets S. However,

(P+ xA)(P+ yA)c P+ xyA,
so that we must have xy¢P. We have thus obtained the following theorem.

Theorem 1.2. Let S be a multiplicative set and I an ideal disjoint from S;
then there exists a prime ideal containing I and disjoint from §.

If [ is an ideal of A then the set of elements of A, some power of which
belongs to I, is an ideal of 4 (for x"el and y"el=(x +yy'*™ ‘el and
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(ax)"€l). This set is called the radical of I, and is sometimes written \/ I
\/I = {aeA|d"el for some n>0}.

If P is a prime ideal containing I then x"el < P implies that xeP, and
hence \/ICP; conversely, if x¢\/1 then S,={1,x,x%...} is a multi-
plicative set disjoint from I, and by the previous theorem there exists a
prime ideal containing I and not containing x. Thus, the radical of I is
the intersection of all prime ideals containing I

JI= P

P=1
In particular if we take I = (0) then \/ (0) is the set of all nilpotent elements
of A4, and is called the nilradical of A; we will write nil(A) for this. Then
nil(A4) is intersection of all the prime ideals of A. When nil(4) =0 we say
that A is reduced. For any ring A we write A,.4 for A/nil(A);A4,.4 is of
course reduced.

The intersection of all maximal ideals of a ring A(+0) is called the
Jacobson radical, or simply the radical of A, and written rad(4). If
xerad(A) then for any aeA, 1 + ax is an element of A not contained in
any maximal ideal, and is therefore a unit of A by Theorem 1. Conversely
if xeA has the property that 1+ Ax consists entirely of units of 4 then
xerad(A) (prove this!).

A ring having just one maximal ideal is called a local ring, and a
(non-zero) ring having only finitely many maximal ideals a semilocal ring.
We often express the fact that 4 is a local ring with maximal ideal m by
saying that (4, m) is a local ring; if this happens then the field k = A/m is
called the residue field of A. We will say that (4, n, k) is a local ring to
mean that A is a local ring, m =rad(A4) and k= 4/m. If (4,m) is a local
ring then the elements of A not contained in m are units; conversely a
(non-zero) ring 4 whose nan-units form an ideal is a local ring.

In general the product II' of two ideals I, I' is contained in InI’, but
does not necessarily coincide with it. However, if I + I = (1) (in which case
we say that I and I' are coprime), then II'=I1n1I"; indeed, then
INI'=(InIYI+T)cII' cInI. Moreover, if I and I', as well as [
and I” are coprime, then I and I']” are coprime:

W=U+D)YI+I"N<I+TI'T" ().
By induction we obtain the following theorem.

Theorem 1.3. If I,,1,,...,1, are ideals which are coprime in pairs then
I, 1, =1,nl,n NI,

In particular if A4 is a semilocal ring and m,,...nt, are all of its maximal
ideals then

rad(A)=m;n--nAm, =m,...m,.
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Furthermore, if I +1'=(1) then A/IT' ~ A/l x A/I'. To see this it is
enough to prove that the natural injective map from A/II'= A/INT to
A/l x A/l is surjective; taking eel, e¢’el’ such that e+e¢ =1, we
have ae'+ade=a (modl) a¢ +ae=a (modI') for any a, deA,
giving the surjectivity. By induction we get the following theorem.

Theorem 1.4. 1f 1,,...,1, are ideals which are coprime in pairs then
Al ., ~ A/l x - x A/,

Example 1. Let A be a ring, and consider the ring 4] X | of formal power °
series over A. A power series f =a,+a; X +d,X>+- with a4 is a
unit of A] X] if and only if a, is a unit of A. Indeed, if there exists an
inverse f~!'=by+b; X+ then agby=1; and conversely if a;’eA,
then
l=(ag+a X+ - )bo+b, X+ )
=aghg +(aoh, +a,bo) X +(aghy +ayb; +azbg) X? + -

can be solved for by, by,...:. we just find by, by,... successively from
aghg =1, aph, +a,by=0,....
Since the formal power series ring in several variables A[X4,..., X, ]

can be thought of as (A[ X ,..., X,-, ])[ X, ], here also f =ao + ¥ a; X, +
Y a;X;X;+ - is a unit if and only if the constant term aj is a unit of 4;
from this we see that if ge(X,,...,X,) then 1 + g/ is a unit for any power
series h, so that gerad(A4[ X4,...,X,]), and hence
(Xi,...,.X,)crad(4[ X ,..., X, ]).

If k is a field then k[X,,...,X,] is a local ring with maximal ideal
(X{,.-.,X,). If A is any ring and we set B=A4[X,,...,X,], then since
any maximal ideal of B contains (X ,,...,X,), it corresponds to a maximal
ideal of BAX,,...,X,}~ 4, and so is of the form mB + (X,,...,X,), where
m is a maximal ideal of A. If we write m for this then mnA =m.

By contrast the case of polynomial rings is quite complicated; here it
is just not true that a maximal ideal of A[ X'| must contain X. For example,
X —1 is a non-unit of A[X], and so there exists a maximal ideal m
containing it, and X ¢t Also, if m is a maximal ideal of A[X], it does
not necessarily follow that mn A4 is a maximal ideal of A.

If A4 is an integral domain then so are both A[X] and A[X]: if
f=a,X +a,,, X" '+ and g=bX+b,. X" 4+ with a,#0,
b,#0 then fg=a,b, X ""*+--- #0.If [ is an ideal of A we write I[X] or
I[X ] for the set of polynomials or power series with coefficients in I;
these are ideals of A{X] or A[ X], the kernels of the homomorphisms

A[X] — (A/D[X] or A[X]—>(4/D[X]
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obtained by reducing coefficients modulo I. Hence

ADXIIIX] ~(A/DIX], and A[X]/I[X] ~(A/D]x];
in particular if P is a prime ideal then P[X] and P[ X | are prime ideals
of A[X] and A[ X, respectively.

If 1 is finitely generated, that is I=a; 4+ +a,A, then I[X]=
a A[X]+ - +a,A[ X]=I-A[ X ]; however, if I is not finitely generated
then I[ X ] is bigger than I-A[ X ]. In the polynomial ring this distinction
does not arise, and we always have I[ X]=1-A[X].

Example 2. For a ring A and a, be A, we have a4 < bA if and only if a
is divisible by b, that is a = bc for some ceA. We assume that A4 is an
integral domain in what follows. An element aeA is said to be irreducible
if a is not a unit of 4 and satisfies the condition
a=bc=b or cis a unit of A.

This is equivalent to saying that a4 is maximal among proper principal
ideals. If aA is a prime ideal then « is said to be prime. As one sces easily,
a prime element is irreducible, but the converse does not always hold.

Suppose that an element a has two expressions as products of prime
elements:

a=piP;...py=D"]... Py, With p; and p; prime.
Then n=m, and after a suitable reordering of the p; we have p;4 = p;4;
for py---p,, is divisible by p;, and so onc of the factors, say pj, is
divisible by p,. Now since both p; and p, are irreducible, p,A=p, 4
hence py =up,, with u a unit, and p,--'p,=up,- p,. We can replace
p, by up,, and induction on n completes the proof In this sense,
factorisation into prime elements (whenever possible) is unique.

An integral domain in which any element which is neither 0 nor a unit
can be expressed as a product of prime elements is called a unigue
factorisation domain (abbreviated to UFD), or a factorial ring. It is well
known that a principal ideal domain, that is an integral domain in which
every ideal is principal, is a UFD (see Ex. 1.4). If 4 is a principal ideal
domain then the prime ideals are of the form (0) or pA with p a prime
element, and the latter are maximal ideals.

Ifkis a field then k[ X 1,..., X, ] isa UFD, as is well-known (see Ex. 20.2).
If f(X,,...,X,) is an irreducible polynomial then {f) is a prime ideal,
but is not maximal if n > 1 (see §5).

Z[\/— 5] is not a UFD; indeed if x =n + m\/— 5 with n, meZ then
ad =n?*+5m?, and since 2=n?+ 5m? has no integer solutions it
follows that 2 is an irreducible element of Z[\/- 5], but we see from
23=(1+ /=51 —/—5) that 2 is not a prime element. We write
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A=1Z[,/—5]=Z[X](X? + 5), then setting k = Z/2Z we have
ARA=Z[X))2, X*+5)=k[X]/(X? - )=k[XJAX — 12
Then P=(2,1—- \/ — 5) is a maximal ideal of 4 containing 2.

Exercises to §1. Prove the folowing propositions.

1.1. Let A be a ring, and I < nil (4) an ideal made up of nilpotent elements; if
aeA maps to a unit of 4/I then a is a unit of A.

1.2. LetA,,...,A, berings; then the prime ideals of A, x -+ x A, are of the form
Ay XX Ao X Pyx Ajpg X x A4,
where P, is a prime ideal of A,.

1.3. Let A and B be rings, and f:4 — B a surjective homomorphism.

(a) Prove that f(rad A) = rad B, and construct an example where the
inclusion is strict.
(b) Prove that if A4 is a semilocal ring then f(rad A) = rad B.

1.4. Let A be an integral domain. Then 4 is a UFD if and only if every
irreducible element is prime and the principal ideals of A satisfy the
ascending chain condition. (Equivalently, every non-empty family of
principal ideals has a maximal element.)

1.5. Let{P,} ;.4 be anon-empty family of prime ideals, and suppose that the P,
are totally ordered by inclusion; then [\ P, is a prime ideal. Also, if [ is
any proper ideal, the set of prime ideals containing [ has a minimal element.

1.6. Let 4 be aring, I, P,,...,P, ideals of 4, and suppose that P,..., P, are
prime, and that [ is not contained in any of the P; then there exists an
element xel not contained in any P,

2 Modaules

Let A be a ring and M an A-module. Given submodules N, N’
of M, the set {aeAlaN’ < N} is an ideal of A, which we write N:N’
or (N:N),. Similarly, if =4 is an ideal then {xeM|Ixc N} is a
submodule of M, which we write N:I or (N:Ij,. For acA we define
N:a similarly. The ideal 0:M is called the annihilator of M, and written
ann(M). We can consider M as a module over 4/ann(M). If ann(M) =0
we say that M is a faithful A-module. For xeM we write ann(x)=
{acAlax =0}

If M and M’ are A-modules, the set of A-linear maps from M to M’
is written Hom 4(M, M"). This becomes an A-module if we define the sum
f + g and the scalar product af by

(f +9)x) = fx) +g(x), (@Nx)=a f(x);

(the fact that af is A-linear depends on A4 being commutative).
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To say that M is an A-module is to say that M is an Abelian group
under addition, and that a scalar product ax is defined for ae4 and
xeM such that the following hold:

(*)  alx+y)=ax+ay, (ab)x=a(bx), (a+bx=ax+bx, lx=x;
for fixed ae A the map x+—ax is an endomorphism of M as an additive
group. Let E be the set of endomorphisms of the additive group M;
defining the sum and product of A, ueE by

(A4 @)(x) = Ax) + p(x),  (Ap)x) = Mu(x))
makes E into a ring (in general non-commutative), and giving M an
A-module structure is the same thing as giving a homomorphism
A — E. Indeed, if we write a;, for the element of E defined by x—ax then
(*) become

(ab)y=apb,, (a+b)=a,+b, (1,),=1g
We can express the fact that ¢:M — M is A-lincar by saying that
ocE and that ¢ commutes with g; for aeA, that is a;¢ = @a,. Since
* Ais commutative, a, is itself an A-linear map of M for ae A. We normally
write simply a:M — M for the map q;.

If M is a B-module and f:4 — B a ring homomorphism, then we
can make M into an A-module by defining a-x = f(a)'x for acA and
xeM. This is the A-module structure defined by the composite of
f:A— Bwith B— E, where E is the endomorphism ring of the additive
group of M, and B — E is the map defining the B-module structure of M.

If M is finitely generated as an A-module we say simply that M is a
finite A-module, or is finite over A. A standard technique applicable to
finite A-modules is the ‘determinant trick’, one form of which is as follows
(taken from Atiyah and Macdonald [AM]).

Theorem 2.1. Suppose that M is an A-module generated by n elements,
and that peHom (M, M); let I be an ideal of 4 such that ¢p(M)cIM,
Then there is a relation of the form

** "+a 90" '+ a0 +a,=0,
with g;el for 1 <i < n (where both sides are considered as endomorph-
isms of M).
Proof. LetM = Aw, + -+ + Aw,; by the assumption ¢ (M) < IM there exist
ai;el such that ¢(w;) = Y% a;w;. This can be rewritten

g
Y (@pd;—a;) w;=0 (for 1<i<n),
ji=1
where §;; is the Kronecker symbol. The coefficients of this system of linear
equations can be viewed as a square matrix (¢d;; — a;;) of elements of A'[¢],
the commutative subring of the endomorphism ring E of M generated by

the image 4’ of A together with ¢; let b;; denote its (i,j)th cofactor, and
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d its determinant. By multiplying the above equation through by b, and
summing over i, we getdw, =0for 1 <k <n Henced-M =0,s0 thatd =0
as an element of E. Expanding the determinant d gives a relation of the
form (**). =

Remark. As one sees from the proof, the left-hand side of (**) is the
characteristic polynomial of (a;j),

F(X)=det(Xé;;—ay)
with ¢ substituted for X. If M is the free A-module with basis
y,...,0, and I = A, the above result is nothing other than the classical
Cayley-Hamilton theorem: let f(X) be the characteristic polynomial of
the square matrix ¢ =(a;;); then f(p)=0.

Theorem 2.2 (NAK). Let M be a finite 4-module and I an ideal of 4. If
M = IM then there exists ac A such that aM =0 and a=1mod I If in
addition I < rad (4) then M =0,

Proof. Setting ¢ =1,, in the previous theorem gives the relation a =
14a,+ " +a,=0 as endomorphisms of M, that is aM =0, and
a=1modlI. If I crad(A) then a is a unit of A, so that on multiplying
both sides of aM =0by a ! weget M=0. m

Remark. This theorem is usually referred to as Nakayama’s lemma, but
the late Professor Nakayama maintained that it should be referred to as
a theorem of Krull and Azumaya; it is in fact difficult to determine which
of these three first had the result in the case of commutative rings, so we
refer to it as NAK in this book. Of course, this result can easily be proved
without using determinants, by induction on the number of generators
of M.

Corollary. Let A be a ring and I an ideal contained in rad (A4). Suppose
that M is an A-module and N = M a submodule such that M/N is finite
over A. Then M =N + IM implies M = N.
Proof. Setting M = M/N we have M =IM so that, by the theorem,
M=0. =

If W is a set of generators of an A-module M which is minimal, in the
sense that any proper subset of W does not generate M, then W is said
to be a minimal basis of M. Two minimal bases do not necessarily have
the same number of elements; for example, when M = 4, if x and y are
non-units of 4 such that x+y=1 then both {1} and {x,y} are
minimal bases of A. However, if A is a local ring then the situation is clear:

Theorem 2.3. Let (A, m, k) be a local ring and M a finite A-module; set
M = M/mM. Now M is a finite-dimensional vector space over k, and we
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write n for its dimension. Then:

(i) If we take a basis {iy,...,u,} for M over k, and choose an
inverse image w;eM of each u, then {u,...,u,} is a minimal basis
of M;

(ii) conversely every minimal basis of M is obtained in this way, and
so has n elements.

(iii) If {uy,...,u,} and {v,...,v,} are both minimal bases of M, and

v;= Y a;u; with a;eA then det(a;) is a unit of A, so that (g;) is an
invertible matrix.
Proof. (i) M =) Au;+mM, and M is finitely generated (hence also
M/Y Au;), so that by the above corollary M =3} Au;. If {u,...,u,} is
not minimal, so that, for example, {u,,...,u,} already generates M
then {a,,...,a,} generates M, which is a contradiction. Hence
{uy,...,u,} is a minimal basis.

(i1) If {uy,..., u,} is a minimal basis of M and we set #; for the image
of u; in M, then d,,...,1, generate M, and are linearly independent
over k; indeed, otherwise some proper subset of {uy,...,4,} would

be a basis of M, and then by (i) a proper subset of {u,,..,u,} would
generate M, which is a contradiction.

(iiiy Write a;; for the image in k of a;;, so that 5, =) ai; holds in
M. Since (d;;) is the matrix transforming one basis of the vector space
M into another, its determinant is non-zero. Since det(a;;) mod m=
det(a;) # 0 it follows that det(a;;) is a unit of 4. By Cramér’s formula
the inverse matrix of (a;;) exists as a matrix with entries in 4. =

We give another interesting application of NAK, the proof of which is

due to Vasconcelos [2].

Theorem 2.4. Let A be a ring and M a finite A-module. If f:M — M is
an A-linear map and f is surjective then [ is also injective, and is thus
an automorphism of M.

Proof. Since f commutes with scalar multiplication by elements of 4, we
can view M as an A[ X ]-module by setting X -m = f(m) for me M. Then by
assumption XM = M, so that by NAK there exists YeA[X] such that
(1+XY)M=0. Now for ueKer(f) we have O0=(1+XY)u)=
u+ Yf(u)=u, so that f is injective. =

Theorem 2.5. Let (4, m) be a local ring; then a projective module over A
1s free (for the definition of projective module, see Appendix B, p. 277).
Proof. This is easy when M is finite: choose a minimal basis ..., , of

M and define a surjective map ¢:F — M from the free module F =
Ade; @@ Ae, to M by (Y .aie;) = Y a,m;; if we set K = Ker(¢) then, from
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the minimal basis property,
Yaw,=0 = aem foralli.

Thus K — mF. Because M is projective, there exists y: M — F such that
F=y(M)®K, and it follows that K =mK. On the other hand, K is a
quotient of F, therefore finite over 4, so that K =0 by NAK and F ~ M.

The result was proved by Kaplansky [2] without the assumption that
M is finite. He proves first of all the following lemma, which holds for
any ring (possibly non-commutative).

Lemma 1. Let R be any ring, and F an R-module which is a direct sum of

countably generated submodules; if M is an arbitrary direct summand of F

then M is also a direct sum of countably generated submodules.

Proof of Lemma 1. Suppose that F = M @ N, and that F = ), E;, where

each E; is countably generated. By transfinite induction, we construct a

well-ordered family {F,} of submodules of F with the following properties:
(i) if « <f then F, = F,

(i) F=J.F.

(iii) if o is a limiting ordinal then F,= | J;,Fs,

(iv) F,./F, is countably generated,

(v) F,=M,®N,, where M\,=MnF,N,=NnF,,

(vi) each F,is a direct sum of E, taken over a suitable subset of A.
We now construct such a family {F,}. Firstly, set F,=(0). For an
ordinal a, assume that F, has been defined for all ordinals f <o If « is
a limiting ordinal, set F, = Jz<,F;. If o is of the form a=f + 1, let Q,
be any one of the E; not contained in Fj (if Fz = F then the construction
stops at Fy). Take a set x;;, X, ,,... of generators of Q,, and decompose
x,, into its M- and N-components; now let 0, be the direct sum of the
finitely many E, which are necessary to write each of these two components
in the decomposition F = @ E,, and let x,,,x,,,... be generators of Q,.
Next decompose x,, into its M- and N-components, let Q4 be the direct
sum of the finitely many E, needed to write these components, and let
X31, X32,... be generators of Q5. Then carry out the same procedure with
X1, etting X4, X4,,. .., then do the same for x, ;. Carrying out the same
procedure for each of the x;; in the order x;;,X5,X51,%13,X22,X31,.--
we get ‘countably many elements x;;. We let F, be the submodule of F
generated by Fj and the x;;, and this satisfiesall our requirements. This
gives the family {F,}.

Now M = | /M, with each M, a direct summand of F,and M, ,; > M,,
so that M, is also a direct summand of M. ;. Moreover,

Fa+1/Fa=(Ma+1/Ma)®(Na+l/Na)5

j*
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and hence M, /M, is countably generated. Thus we can write
M, =M,®M,,,, with M,,, countably generated.
When a is a limit ordinal, since M, = | ;<. M}, we set M, = 0. Then finally
we can write
M=@M, with M, (at most) countably generated. ®
o

Of course a free module satisfies the assumption of Lemma 1, so that,
in particular, we see that any projective module is a direct sum of countably
generated projective modules. Thus in the proof of Theorem 2.5 we can
assume that M is countably generated.

Lemma 2. Let M be a projective module over a local ring A4, and xeM.
Then there exists a direct summand of M containing x which is a free
module.
Proof of Lemma 2. We write M as a direct summand of a free module
F=M®@N. Choose a basis B = {u;},; of F such that the given element
x has the minimum possible number of non-zero coordinates when
expressed in this basis. Then if x =u,a, + - + u,a, with 0 # g;€ A, we have

a¢y Aa; for i=1,2,...,n

j#EL

indeed, if, say, a, = Y 17" b;a, then x = Y 1~ (u; + u,b;)a;, which contradicts
the choice of B. Now set u; = y; + z; with y,e M and z,eN; then

X=)au =y ay;.
If we write y, = > 7_, c,u; + t;, with t; linear combinations of elements of
Bother than uy,...,u,, we get relations a; = Y *_, a,c;;, and, hence, in view
of what we have seen above, we must have

l—cyem and c¢jem for i#j.
It follows that the matrix (c;;) has an inverse (this can be seen from the
fact that the determinant is = 1 mod m, or by elimination). Thus replacing
Ui,..., U, bY y1,...,y, in B, we still have a basis of F. Hence, F, = ) y;A is
a direct summand of F, and hence also of M, and satisfies all the
requirements of Lemma 2. =

To prove the theorem, let M be a countably generated projective module,

M=w A+ w,A+---. By Lemma 2, there exists a free module F, such
that w,eF,,and M = F, ® M,, where M, is a projective module. Let o)
be the M ,-component of w, in the decomposition M = F, @ M, and take
a free module F, such that w,eF, and M, = F,® M,, where M, is a
projective module. Let w} be the M,-component of w3 in M=F,; @
F,® M,; proceeding in the same way, we get

M=F @®F,®...,
so that M is a free module. =
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We say that an A-module M #0 is a simple module if it has no
submodules other than 0 and M itself. For any 0 # weM, we then have
M = Aw. Now Aw ~ 4/ann (), but in order for this to be simple, ann (w)
must be a maximal ideal of 4. Hence, any simple A-module is isomorphic
to A/m with m a maximal ideal, and conversely an A-module of this form
is simple. If M is an 4-module, a chain

M=MoM,>>M,=0
of submodules of M is called a composition series of M if every M;/M,; ., is
simple; 7 is called the length of the composition series. If a composition series
of M exists, its length is an invariant of M independent of the choice of
composition series. More precisely, if M has a composition series of length
r, and if MoN;>-->N, is a strictly descending chain of sub-
modules, then we have s <r. This invariance corresponds to part of the
basic Jordan—Holder theorem in group theory, but it can easily be proved
on its own by induction, and the reader might like to do this as an exercise.
The length of a composition series of M is called the length of M, and written
(M), if M does not have a composition series we set I(M) = co. A necessary
and sufficient condition for the existence of a composition series of M is that
the submodules of M should satisfy both the ascending and descending
chain conditions (for which see §3). In general, if N = M is a submodule,
we have

I(M)=I(N)+ KM/N).
If0o-M, — M, — - — M, - 0is an exact sequence of 4-modules and
each M; has finite length then

¥ (-~ 1)iM) =0

If m is a maximal ideal of A and is finitely generated over 4 then

I(A/m") < 0. In fact,

I(A/mY) = WA /m) + I(m/m?) + - + [~ H/m);
now each mi/m'*? is a finite-dimensional vector space over the field
k= A/m, and since its A-submodules are the same thing as its vector
subspaces, l(m’/m*1) is equal to the dimension of m'/m*! as k-vector
space. (This shows that A/m” is an Artinian ring, see §3.)

Considering I(A/m”) for all v, we get a function of v which is intimately
related to the ring structure of 4, and which also plays a role in the resolution
of singularities in algebraic and complex analytic geometry; thisis studied in
Chapter 5.

We say that an 4-module M is of finite presentation if there exists an
exact sequence of the form

A? — A7— M —-0.
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This means that M can be generated by g elements w,, ..., @, in such a way
that the module R={(a,,...,a,)eA%) a;0,=0} of linear relations
holding between the w; can be generated by p elements.

Theorem 2.6. Let A be a ring, and suppose that M is an A-module of finite
presentation. If
0-K—N-—>M-0
is an exact sequence and N is finitely generated then so is K.
Proof. By assumption there exists an exact sequence of the form

L, L, L, M -0, where L, and L, are free modules of finite rank.
From this we get the following commutative diagram (see Appendix B):

Lz_g—'Ll-f_’M'—)O

bl

0K 2N —25 M-0.

If we write N=AE +--+ A, then there exist v;eL; such that
o(&)=f(v). Set & =&,—a(v;); then @(£)=0, so that we can write
& =1 (n;) with n;,eK. Let us now prove that

K=B(Ly)+ Ay, + - + An,,.
For any ek, set y(n) =) a;; then

Yin— Zairli) = Zai(éi —&)= “(Zaivi),
and since 0 = @} av) = (O aw), we can write Y ap; = g(u) with ueL,.
Now

YBW) = aglu) = a(Y ap) =yl — Yam),

so that # = f(u) + ) am;, and this proves our assertion. ®

Exercises to §2. Prove the following propositions.

2.1. Let A be aring and I a finitely generated ideal satisfying I = I%; then I is
generated by an idempotent e (an element e satisfying e? = e).

2.2. Let A be a ring, I an ideal of 4 and M a finite A-module; then
\/ann(M/IM) = \/(ann(M) +1).

2.3. Let M and N be submodules of an A-module L. If M + N and M~ N are
finitely generated then so are M and N.

24. Let A be a(commutative) ring, 4 # 0. An A-module is said to be free of rank
n if it is isomorphic to 4"

(a) If A" ~ A™ then n = m; prove this by reducing to the case of a field.

(Note that there are counter-examples to this for non-commutative rings.)
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(b) Let C = (¢;)) be ann x m matrix over A, and suppose that Chas a non-
zero r x r minor, but that all the (r + 1) x (r + 1) minors are 0. Show then
that if r < m, the m column vectors of C are linearly dependent. (Hint: you
can assume that m = r 4 1.) Deduce from this an alternative proof of (a).

(c) If A is a local ring, any minimal basis of the free module 4" is a basis
(that is, a linearly independent set of generators).

2.5. Let A be a ring, and 0L — M — N -0 an exact sequence of A-
modules.

(a) If L and N are both of finite presentation then so is M.

(b) If L is finitely generated and M is of finite presentation then N is of
finite presentation.

3 Chain conditions

The following two conditions on a partially ordered set I' are
equivalent:

(*) any non-empty subset of I' has a maximal element;

(**) any ascending chain y, <y, <--- of elements of I' must stop after a
finite number of steps.

The implication (*)=(**}is obvious. We prove (**)=-(*). Let I" be a non-
empty subset of I'. If T does not have a maximal element, then by the axiom
of choice, for each yel'' we can choose a bigger element of I, say ¢(y). Now if
we choose any 7, eI and set y, = @(p,), 73 = ©(y,),. - . then we get an infinite
ascending chain y, <9, <---, contradicting (**).

When these conditions are satisfied we say that I has the ascending chain
condition (a.c.c.), or the maximal condition. Reversing the order we can define
the descending chain condition (d.c.c.), or minimal condition in the same way.

If the set of ideals of a ring A has the a.c.c., we say that 4 is a Noetherian
ring, and if it has the d.c.c,, that A is an Artinian ring. If A is Noetherian (or
Artinian) and B is a quotient of 4 then B has the same property; this is
obvious, since the set of ideals of B is order-isomorphic to a subset of
that of 4.

The a.c.c. and d.c.c. were first used in a paper of Emmy Noether (1882-1935), Idealtheorie

in Ringbereichen, Math. Ann., 83 (1921). Emil Artin (1898-1962) was, together with Emmy
Noether, one of the founders of modern abstract algebra. As well as studying non-com-
mutative rings whose one-sided ideals satisfy the d.cc., he also discovered the Artin—
Rees lemma, which will turn up in §8.

In the same way, we say that a module is Noetherian or Artinian if its set of
submodules satisfies the a.c.c. or the d.c.c. If M has either of these properties,
then so do both its quotient modules and its submodules. (A subring of a
Noetherian or Artinian ring does not necessarily have the same property:
why not?)
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A ring A is Noetherian if and only if every ideal of A4 is finitely generated.
(Proof, ‘only if”: given an ideal I, consider a maximal element of the set of
finitely generated ideals contained in I; this must coincide with I.‘If’: given
an ascending chain I, < I, = of ideals, | )1, is also an ideal, so that by
assumption it can be generated by finitely many elements a,,. .., a,. Thereis
some I, which contains all the g;, and the chain must stop there.)

In exactly the same way, an A-module M is Noetherian if and only if
every submodule of M is finitely generated. In particular M itself must be
finitely generated, and if 4 is Noetherian then this is also sufficient. Thus we
have the well-known fact that finite modules over a Noetherian ring are
Noetherian; we now give a proof of this in a more general form.

Theorem 3.1. Let A be a ring and M an A-module.

(i) Let M’ = M be a submodule and ¢: M —> M/M’ the natural map. If
N, and N, are submodules of M such that N, c Ny, NynM'=N,n M’
and @(N,)=¢@(N,) then N, =N,.

(i) Let 0> M — M — M"” -0 be an exact sequence of A-modules;
if M’ and M" are both Noetherian (or both Artinian), then so is M.

(iii) Let M be a finite 4-module; then if A is Noetherian (or Artinian),
sois M.

Proof. (i) is easy, and we leave it to the reader.

(ii) is obtained by applying (i) to an ascending (respectively descending)
chain of submodules of M.

(iii) If M is generated by n elements then it is a quotient of the free module
A" so that it isenough to show that 4™ is Noetherian (respectively Artinian).
However, this is clear from (ii) by induction on n. =

For a module M, it is equivalent to say that M has both the a.c.c. and
the d.c.c., or that M has finite length. Indeed, if (M) < oo then (M} < (M)
for any two distinct submodules M, < M, = M, so that the two chain
conditions are clear. Conversely, if M has the d.c.c. then we let M, be a
minimal non-zero submodule of M, let M, be a minimal element among all
submodules of M strictly containing M, and proceed in the same way to
obtain an ascending chain0 = M, M, = M, =---;if M also has the a.c.c.
then this chain must stop by arriving at M, so that M has a composition
series.

Every submodule of the Z-module Z is of the form nZ, so that Z is
Noetherian, but not Artinian. Let p be a prime, and write W for the Z-
module of rational numbers whose denominator is a power of p; then
the Z-module W/Z is not Noetherian, but it is Artinian, since every proper
submodule of W/Z is either 0 or is generated by p~" for n=1,2,.... This
shows that the a.c.c. and d.c.c. for modules are independent conditions,
but this is not the case for rings, as shown by the following result.



16 Commutative rings and modules

Theorem 3.2 (Y. Akizuki). An Artinian ring is Noetherian.
Proof. Let A be an Artinian ring. It is sufficient to prove that A has finite
length as an 4-module. First of all, 4 has only finitely many maximal ideals.
Indeed, if py, p,,...is aninfinite set of distinct maximal ideals then it is easy
to see that p, > p,;p, D p,P,P, " is an infinite descending chain of ideals,
which contradicts the assumption. Thus, we let p,, p,,...,p, be all the
maximal ideals of 4 and set I =pp,...p, =rad (4). The descending chain
I 1% stops after finitely many steps, so that there is an s such that
=" If we set (0:1F) = J then

(D =0:F):1)=0:I") = J;
let’sprovethat J = A. By contradiction, suppose that J # A4; then there exists
an ideal J’ which is minimal among all ideals strictly bigger than J. For any
xeJ'—Jwehave J) = Ax + J.Now I =rad(4) and J # J', so that by NAK
J’ # Ix + J,and hence by minimality of J' we have Ix + J = J, and this gives
Ix < J. Thus xe(J:I) = J, which is a contradiction. Therefore J = A4, so that
I* =0. Now consider the chain of ideals

ADp 2P, 2 2P P 2121, D Ipip,

o>’ ?p, 2 2F=0.

Let M and Mp; be any two consecutive terms in this chain; then M/Mp;isa
vector space over the field A/p;, and since it is Artinian, it must be finite-
dimensional. Hence, I{M/Mp;) < co, and therefore the sum I(A4) of these
terms is also finite. =

Remark. This theorem is sometimes referred to as Hopkins’ theorem, but it was proved in the
above form by Akizuki [2] in 1935. It was rediscovered four years later by Hopkins [1], and
he proved it for non-commutative rings (a left-Artinian ring with unit is also left-Noetherian).

Theorem 3.3. If A4 is Noetherian then so are A[X] and A[X].

Proof. The statement for A[X] is the well-known Hilbert basis theorem
(see, for example Lang, Algebra, or [AM], p. 81), and we omit the proof.
We now briefly run through the proof for AJX]. Set B=A[X], and
let I be an ideal of B; we will prove that I is finitely generated. Write
I(r) for the ideal of A formed by the leading coefficients a, of f =a, X"+
a4, X" 4+ as f runs through I » X"B; then we have

I0)ci)<=I(2)= .

Since A4 is Noetherian, there is an s such that I(s) = I(s + 1) = -*-; moreover,
each I(j) is finitely generated. For each i with 0 < i < s we take finitely many
elements a, €A generating I(i), and choose g;,eIn X'B having a;, as the
coefficient of X*. These g,, now generate 1. Indeed, for fel we can take
a linear combination g, of the g,, with coefficients in A such that
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f—goeINnXB, then take a linear combination g, of the g, with
coefficients in A such that f —g,—g,€lnX?B, and proceeding in the
same way we get

f =909 ——gelnX*"!B.
Now I(s + 1) = I(s), so we can take a linear combination g, ; of the Xg,,
with coefficients in A such that

f—go— 01— —gss:1€InX°"2B.
We now proceed in the same way to get g,,,,.... For i<s, each g,
is a linear combination of the g¢; with coefficients in A4, and, for
i>s, a combination of the elements X' °g . For each i>s we write
g:=Y,a,X "%g,,, and then for each v we set h, =) 2 a;, X'"%; h, is an
element of B, and

f=go+ 491+ ghvgw .

A ring A[b,,...,b,] which is finitely generated as a ring over a
Nocetherian ring A4 is a quotient of a polynomial ring A[ X,...,X,], and
so by the Hilbert basis theorem is again Noetherian. We now give some
other criteria for a ring to be Noetherian.

Theorem 3.4 (1. S. Cohen). If all the prime ideals of a ring A are finitely
generated then A is Noetherian.
Proof. Write T for the set of ideals of A which are not finitely generated.
IfI" # & then by Zorn’s lemma I' contains a maximal element I. Then I is
not a prime ideal, so that there are elements x, ye A with x¢l, y¢I but
xyel. Now I+ Ay is bigger than I, and hence is finitely generated, so
that we can choose u,,...,u,el such that

I+ Ay =(uq,...,u,y).
Moreover, I:y={acA|ayel} contains x, and is thus bigger than
I, so it has a finite system of generators {v,,...v,}. Finally, it is
easy to check that I=(u,...,u, v,...,0,)); hence, I¢I", which is a
contradiction. Therefore ' = . =

Theorem 3.5. Let A be a ring and M an A-module. Then if M is a
Noetherian module, 4/ann (M) is a Noetherian ring.

Proof. 1f we set A= A/ann(M) and view M as an A-module, then the
_ submodules of M as an 4-module or 4-module coincide, so that M is
also Noetherian as an A-module. We can thus replace 4 by 4, and then
ann (M) = (0). Now letting M = Aw, + " + Aw,, we can embed 4 in M"
by means of the map ar(aw,, ..., aw,). By Theorem 1, M" is a Noetherian
module, so that its submodule A is also Noetherian. (This theorem can
be expressed by saying that a ring having a faithful Noetherian module
is Noetherian.) W
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Theorem 3.6 (E. Formanek [1]). Let 4 be a ring, and B an A4-module
which is finitely generated and faithful over A. Assume that the set of
submodules of B of the form 1B with I an ideal of A satisfies the a.c.c;
then A is Noetherian.

Proof. 1t will be enough to show that B is a Noetherian 4-module. By
contradiction, suppose that it is not; then the set

B I is an ideal of 4 and B/IB is
{I non-Nocetherian as A-module }
contains {0} and so is non-empty, so that by assumption it contains a
maximal element. Let IB be one such maximal element; then replacing B
by B/IB and A by A/ann(B/IB) we see that we can assume that B is a
non-Noetherian A-module, but for any non-zero ideal I of 4 the quotient
B/IB is Noetherian.

Next we set

I' = {N|N is a submodule of B and B/N is a faithful A-module}.
If B= Ab, + - + Ab, then for a submodule N of B,
Nel'eVaeA—-0, {ab,,...,ab,} &£ N.

From this, one sees at once that Zorn’s lemma applies to I'; hence there
exists a maximal element N, of I'. If B/N, is Noetherian then 4 is a
Noetherian ring, and thus B is Noetherian, which contradicts our
hypothesis. It follows that on replacing B by B/N, we arrive at a module
B with the following properties:

(1) B is non-Noetherian as an A-module;

(2) for any ideal I #(0) of 4, B/IB is Noetherian;

(3) for any submodule N #(0) of B, B/N is not faithful as an 4-module.

Now let N be any non-zero submodule of B. By (3) there is an element
acA with a #0 such that a(B/N)=0, that is such that aB< N. By (2)
B/aB is a Noetherian module, so that N/aB is finitely generated; but since
B is finitely generated so is aB, and hence N itself is finitely generated.
Thus, B is a Noetherian module, which contradicts (1). =

As a corollary of this theorem we get the following result.

Theorem 3.7.

(i) (Eakin—Nagata theorem). Let B be a Noetherian ring, and 4.a subring
of B such that B is finite over A4; then A is also a Noetherian ring.

(ii) Let B be a non-commutative ring whose right ideals have the a.c.c.,
and let 4 be a commutative subring of B. If B is finitely generated as a
left A-module then A4 is a Noetherian ring.

(iii) Let B be a non-commutative ring whose two-sided ideals have the
a.c.c., and let A be a subring contained in the centre of B; if B is finitely
generated as an A-module then A4 is a Noetherian ring.
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Proof. B has a unit, so is faithful as an 4-module. Hence it is enough to
apply the previous theorem. =

Remark. Part (i) of Theorem 7 was proved in Eakin’s thesis [1] in 1968,
and the same result was obtained independently by Nagata [9] a little
later. Subsequently many alternative proofs and extensions to the non-
commutative case were published; the most transparent of these seems to
be Formanek’s result [1], which we have given above in the form of
Theorem 6. However, this also goes back to the idea of the proofs of
Eakin and Nagata.

Exercises to §3. Prove the following propositions.

3.1. Let1,,...,I, beideals ofaring Asuch that I, n---n1, =(0);ifeach 4/I,isa
Noetherian ring then so is 4.

3.2. Let A and B be Noetherian rings, and f:4A — C and ¢g:B-— C ring
homomorphisms. If both f and g are surjective then the fibre product
A xB (that is, the subring of the direct product A x B given by
{(a,b)e A x B|f(a) = g(b)} is a Noetherian ring.

3.3. Let A be a local ring such that the maximal ideal m is principal and
(a>om" =(0). Then A is Noetherian, and every non-zero ideal of A4 is a
power of m.

34. Let A be anintegral domain with field of fractions K. A fractional ideal I of
Aisan A-submodule I of K such that I # 0 and af < A for some 0 5 aeK.
The product of two fractional ideals is defined in the same way as the
product of two ideals. If 1 is a fractional ideal of A we set I ™! = {aeK|o]
< A}; this is also a fractional ideal, and 117! < A. In the particular case
that 11~ = A we say that I is invertible. An invertible fractional ideal of A
is finitely generated as an A-module.

3.5. If A is a UFD, the only ideals of A4 which are invertible as fractional ideals
are the principal ideals.

3.6. Let A be a Noetherian ring, and ¢:4 — 4 a homomorphism of rings.
Then if ¢ is surjective it is also injective, and hence an automorphism of 4.

3.7. If Ais a Noetherian ring then any finite A-module is of finite presentation,

but if A is non-Noetherian then A must have finite A-modules which are
not of finite presentation.
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Prime ideals

The notion of prime ideal is central to commutative ring theory. The set
SpecA of prime ideals of a ring 4 is a topological space, and the
‘localisation” of rings and modules with respect to this topology is an
important technique for studying them. These notions are discussed in §4.
Starting with the topology of Spec 4, we can define the dimension of 4 and
the height of a prime ideal as notions with natural geometrical content. In
§5 we treat elementary dimension theory using only field theory, developing
especially the dimension theory of ideals in polynomial rings, including the
Hilbert Nulistellensatz. We also discuss, as example of an application of the
notion of dimension, the theory of Forster and Swan on estimates for the
number of generators of a module. (Dimension theory will be the subject of
a detailed study in Chapter S using methods of ring theory). In §6 we discuss
the classical theory of primary decomposition as modernised by Bourbaki.

4 Localisation and Spec of a ring

Let A be a ring and S = 4 a multiplicative set; that is (as in
§1), suppose that
() x, yeS=xyeS, and (i) 1€S.

Definition. Suppose that f: 4 — Bis a ring homomorphism satisfying the
two conditions

(1) f(x) is a unit of B for all xeS5;

(2) if g: 4 —> Cis a homomorphism of rings taking every element of S to
a unit of C then there exists a unique homomorphism

h:B—s C such that g=hf;

then B is uniquely determined up to isomorphism, and is called the
localisation or the ring of fractions of A with respect to S. We write
B=S7"'4 or Ag, and call f:4 — Ag the canonical map.

We prove the existence of B as follows: define the relation ~ on the
set A x S by

(a,5) ~(b,s)<>3teS such that t{s'a—sh)=0;

20
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it is easy to check that this is an equivalence relation (if we just had
sa=sb in the definition, the transitive law would fail when S has
zero-divisors). Write a/s for the equivalence class of (a,s) under ~, and
let B be the set of these; sums and products are defined in B by the usual
rules for calculating with fractions:
af/s+ b/s’ =(as’ + bs)/ss’, (a/s)-(b/s’) = ab/ss'.

This makes B into a ring, and defining f: 4 — B by f(a) = a/1 we see that
f is a homomorphism of rings satisfying (1) and (2) above. Indeed, if s€§
then f(s) = s/1 has the inverse 1/s; and if g:4 — C is as in (2) then we just
have to set h(a/s)=g(a)g(s)~* (the reader should check that a/s=b/s
implies g(a)g(s)™' = g(b)g(s’) " !). From this construction we see that the
kernel of the canonical map f:4 — Ay is given by

Kerf ={acA|sa=0 for some seS}.

Hence f is injective if and only if § does not contain any zero-divisors
of A. In particular, the set of all non-zero-divisors of A is a multiplicative
set; the ring of fractions with respect to S is called the total ring of fractions
of A. If 4 is an integral domain then its total ring of fractions is the same
thing as its field of fractions.

In general, let f: 4 — B be any ring homomorphism, I an ideal of A
and J an ideal of B. According to the conventions at the beginning of the
book, we write IB for the ideal f(I)B of B. This is called the extension of
I to B, or the extended ideal, and is sometimes also written I°. Moreover,
we write J n A4 for the ideal f~}(I) of A. This is called the contracted ideal
of J, and is sometimes also written J°. In this notation, the inclusions

I**>] and J*cJ

follow immediately from the definitions; from the first inclusion we get

I°°¢ = I°, but substituting J = I° in the second gives /°° < I°, and hence
(*) Ir**=1I° and similarly J*°=J"

This shows that there is a canonical bijection between the sets {IB|I

is an ideal of 4} and {J N A|J is an ideal of B}.

If P is a prime ideal of B then B/P is an integral domain, and since
A/P° can be viewed as a subring of B/P it is also an integral domain, so
that P° is a prime ideal of 4. (The extended ideal of a prime ideal does
not have to be prime.)

An ideal J of B is said to be primary if it satisfies the two conditions:
(1) 1¢J, and (2) for x,yeB, if xyeJ and x¢J then y"eJ for some
n>0; in other words, all zero-divisors of B/J are nilpotent. The property
that all zero-divisors are nilpotent passes to subrings, so that just as for
prime ideals we see that the contraction of a primary ideal remains primary.
If J is primary then \/ J is a prime ideal (see Ex. 4.1).
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The importance of rings of fractions for ring theory stems mainly from
the following theorem.

Theorem 4.1.

(i) All the ideals of Ag are of the form {Ag, with I an ideal of A.

(ii) Every prime ideal of Ag is of the form pAg with p a prime ideal of
A disjoint from S, and conversely, pAg is prime in Ag for every such p;
exactly the same holds for primary ideals.

Proof. (i) If J is an ideal of Ay, set I=JnA. If x=a/seJ then
x f(s) = f(a)eJ, so that acl, and then x = (1/s) f(a)eIAg. The converse
inclusion I Ag < J is obvious, so that J =14,

(ii) If P is a prime ideal of Ag and we set p = P A, then p is a prime
ideal of 4, and from the above proof P =pAg. Moreover, since P does
not contain units of A, we have pnS = (J. Conversely, if p is a prime
ideal of 4 disjoint from S then

b .
g-?epAs with s, teS=rabep for some reS,
s

and since r¢p we must have aep or bep, so that a/s or b/tepAg. One
also sees easily that 1¢pAy, so that pAg is a prime ideal of Ag.

For primary ideals the argument is exactly the same: if p is a primary
ideal of A disjoint from S and if rabep with reS, then since no power
of r is in p we have abep. From this we get either a/sepAg or (b/t)*cp Ay
for somen. =

Corollary. If A is Noetherian (or Artinian) then so is 4.
Proof. This follows from (i) of the theorem. m

We now give examples of rings of fractions A for various multiplicative
sets S.

Example 1. Let aeA be an element which is not nilpotent, and set
S={1,a,a%...}. In this case we sometimes write A, for As. (The reason
for not allowing a to be nilpotent is so that 0¢S. In general if 0eS then
from the construction of Ay it is clear that A5 =0, which is not very
interesting.) The prime ideals of 4, correspond bijectively with the prime
ideals of A not containing a.

Example 2. Let p be a prime ideal of 4, and set S =A4 —p. In this case
we usually write 4, for Ag. (Writing 4, and 4, ,, to denote the same thing
is totally illogical notation, and the Bourbaki school avoids A4g, writing
S~ 14 instead; however, the notation Ag does not lead to any confusion.)
The localisation A, is a local ring with maximal ideal pA, . Indeed, as we saw
in Theorem 1, pA, is a prime ideal of 4,, and furthermore, if J < A4, is any
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proper ideal then I = J n 4 is an ideal of 4 disjoint from A — p,andso I < p,
giving J =14, < pA,. The prime ideals of A, correspond bijectively with
the prime ideals of 4 contained in p.

Example 3. Let I be a proper ideal of A and set S=1+1={1+
x|xel}. Then § is a multiplicative set, and the prime ideals of Ag
correspond bijectively with the prime ideals p of 4 such that I+p#4.

Example 4. Let S be a multiplicative set, and set §= {acA|abeS for
some beA}. Then § is also a multiplicative set, called the saturation
of S. Since quite generally a divisor of a unit is again a unit, we see from
the definition of the ring of fractions that Ag = 4, and S is maximal among
multiplicative sets T such that Ag = A,. Indeed, one sees easily that § =
{aeAla/l is a unit in Ag}. The multiplicative set S=4—p of
Example 2 is already saturated.

Theorem 4.2. Localisation commutes with passing to quotients by ideals.
More precisely, let A be a ring, S © A a multiplicative set, I an ideal of 4
and S the image of S in A/I; then

Ag/1Ag ~(A/Dys
Proof. Both sides have the universal property for ring homomorphisms
g:A— C such that

(1) every element of S maps to a unit of C,

and (2) every element of I maps to 0;
the isomorphism follows by the uniqueness of the solution to a universal
mapping problem. In concrete terms the isomorphism is given by

a/s mod IAg«>a/s, where a=a+1, §=s5+1 =

In particular, if p is a prime ideal of 4 then

A oA, ~(Afp);=,.

The left-hand side is the residue field of the local ring A,, whereas the

right-hand side is the field of fractions of the integral domain A4/p. This
field is written x(p) and called the residue field of p.

Theorem4.3. Let A be a ring, ScA4 a multiplicative set, and
J:A — A the canonical map. If B is a ring, with ring homomorphisms
9:4A—— B and h:B — Ay satisfying
(1) f=hy,

and (2) for every beB there exists seS such that g(s)-beg(A), then Ag
can also be regarded as a ring of frastions of B. More precisely,

As=Bysy= By, where T= {teB|h(t)\is a unit of Ag}.
Proof. We can factorise h as B— By —> Ag; write a:By — Ag for
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the second of these maps. Now ¢(S) = T, so that the composite A — B
— By factorises as A — Ag— By; write f§: Ag— By for the second of
these maps. Then
ofla/s)) = alg(a)/g(s) = hg(a)/hg(s) = f(a)/ f(s) = a/s,

so that af = 1, the identity map of Ag. Moreover by assumption, for beB
there exist ae A and seS such that bg(s) = g(a). Hence, f(a/s) = g(a)/g(s) =
b/1. In particular for teT, if we take ueAg such that t/1 = f(u) then
u= af(u) = a(t/1) = h(t), so that u is a unit of Ag. Hence, b/t = B(a/s)B(u "),
and B is surjective. Thus o and f are mutually inverse, giving an
isomorphism Ag ~ By. The fact that 45~ B, can be proved similarly.
(Alternatively, this follows since T is the saturation of the multiplicative
set g(S). The reader should check this for himself) m

Corollary 1. If p is a prime ideal of 4,5 =4 —p and B satisfies the
conditions of the theorem, then setting P =pA,n B we have A, = B,.
Proof. Under these circumstances the T in the theorem is exactly B— P.

Corollary 2. Let S = A be a multiplicative set not containing any zero-
divisors; then A can be viewed as a subring of 4y, and for any intermediate
ring A = B < Ay, the ring Ag is a ring of fractions of B.

Corollary 3. If S and T are two multiplicative subsets of A with S< T,
then writing T’ for the image of T in Ag, we have (Ag)p =Ar.

Corollary 4. 1f S < A is a multiplicative set and P is a prime ideal of A
disjoint from S then (As),, = A4p. In particular if P = Q are prime ideals of
A, then

(AQ)PAQ = Ap.
Definition. The set of all prime ideals of a ring A is called the spectrum
of A, and written SpecA; the set of maximal ideals of A4 is called the

maximal spectrum of 4, and written m-Spec A.
By Theorem 1.1 we have

A #0<m-Spec A # J<>Spec A # .
If I is any ideal of A, we set
V({I)={peSpecA|p>1I}.
Then
vihuv(Iy=V({InI)=V({ID),
and for any family {I,},., of ideals we have

Q I, = V<;Ii'>.

From this it follows that % = {V(I)|I is an ideal of A} is closed under
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finite unions and arbitrary intersections, so that there is a topology on
‘ Spec A for which # is the set of closed sets. This is called the Zariski
topology. From now on we will usually consider the spectrum of a ring
together with its Zariski topology. m-Spec A will be considered with the
subspace topology, which we will also call the Zariski topology.

For acA we set D(a)={peSpec Ala¢p}; this is the complement
of V(aAd), and so is an open set. Conversely, any open set of Spec 4 can
be written as the union of open sets of the form D(a). Indeed, if
U=SpecA—V(I) then U= Uae, D(a). Hence, the open sets of the form
D(a) form a basis for the topology of Spec A.

Let f:A— B be a ring homomorphism. For PeSpecB, the ideal
PnA= f"'Pisa point of SpecA. The map Spec B— SpecA defined by
taking P into P A is written °f. As one sees easily, (°f)” *(V(I)) = V(IB),
so that *f is continuous. If g: B~ C is another ring homomorphism then
obviously “(gf)="“ ‘. Hence, the correspondence A+~——SpecA and
fr——“f defines a contravariant functor from the category of rings to the
category of topological spaces. If *f(P)= p, that is if PnA =p, we say
that P lies over p.

Remark. For P a maximal ideal of B it does not necessarily follow that
P~ A is a maximal ideal of A4; for an example we need only consider the
natural inclusion 4 — B of an integral domain A4 in its field of fractions
B. Thus the correspondence A—m-Spec A is not functorial. This is one
reason for thinking of SpecA as more important than m-Spec4. On the
other hand, one could say that SpecA4 contains too many points; for
example, the set {p} consisting of a single point is closed in Spec 4 if and
only if p is a maximal ideal (in general the closure of {p} coincides with
V(p)), so that Spec A almost never satisfies the separation axiom T,.

Let M be an A-module and S < A a multiplicative set; we define the
localisation Mg of M in the same way as Ag. That is,

m
M= {?lmeM, seS},

and

i

m
= ?c»t(s’m —smy=0 for some teS.
If we define addition in Mg and scalar multiplication by elements of
Ag by

m/s +m'/s =(sm+sm')/ss’ and (a/s)(m/s') = am/ss’
then M becomes an4¢-module, and a canonical A-linear map M — My
1s given by m—m/1; the kernel is {meM|sm=0 for some seS}. If $=
A — pis the complement of a prime ideal p of A we write M_for M. The set
{peSpec 4| M, 0} is called the support of M, and written Supp (M). If M is
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finitely generated, and we let M = Aw; + - + Aw,, then
peSupp (M)<>M, #0<3i such that »; #0 in M,

<>3i such that ann(w;) c p<ann(M)= () ann(w)<p,
i=1
so that Supp (M) coincides with the closed subset V(ann(M)) of Spec A4.

Theorem 4.4. Mg~M®, As.
Proof. The map M x Ag— Mg defined by (m,a/s)—am/s is A-bilinear,
so that there exists a linear map o: M ® A5 — Mg such that a(m ® a/s) =
am/s. Conversely we can define f:Mgs— M ® Ag by B(m/s) =m&(1/s);
indeed, if m/s = m'/s’ then ts'm = tsm’ for some teS, and so

m®(1/s) = m® (ts'/tss') = tsm @ (1/ts5) = tsm’ @ (1/ts5")

=m' ®(1/5).

Now it is easy to check that o« and f are mutually inverse Ag-linear
maps. Hence, Mg and M ®, Ag are isomorphic as Ag-modules.

Theorem 4.5. M+— My is an exact (covariant) functor from the category
of A-modules to the category of Ag-modules. That is, for a morphism of
A-modules f:M — N there is a morphism fg:Mg¢— N of Ag-modules
such that

(id)s = id (where id is the identity map of M or M),

9f)s=gsfs;
and such that an exact sequence 0 - M’ — M — M" —0 goes into an
exact sequence 0 > M5 — Mg — M50,
Proof. To prove the exactness of 0 » M5 — M on the last line, view M’
as a submodule of M; then for xe M’ and seS,

x/s=0 in Mg<etx=0 for some teS

<=x/s=0 in Mj,

as required. The remaining assertions follow from the properties of the
tensor product (see Appendix A) and from the previous theorem. (Of
course they can easily be proved directly.) =

It follows from this that localisation commutes with ® and with Tor,
and we will treat all this together in the section on flatness in §7.

Let A be a ring, M an A-module and peSpec 4. There are at least
two interpretations of what it should mean that some property of A or M
holds ‘locally at p’. Namely, this could mean that A, (or M) has the
property, or it could mean that 4, (or M,) has the property for all q in
some neighbourhood U of p in Spec A. The first of these is more commonly
used, but there are cases when the two interpretations coincide. In any
case, we now prove a number of theorems which assert that a local property
implies a global one.
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Theorem 4.6. Let A be a ring, M an A-module and xeM. If x=0in M,
for every maximal ideal p of 4, then x=0.
Proof.

x=0 in M <sx=0 for some se A —p<ann(x) & p.
However, if 1¢ann(x) then by Theorem 1.1, there must exist a maximal
ideal containing ann (x). Therefore 1eann(x), that is x=0. =

Theorem 4.7. Let A be an integral domain with field of fractions K; set
X =m-Spec A. We consider any ring of fractions of 4 as a subring of K.
Then in this sense we have

A=) A,

meX

Proof. For xeK the set I={acAlaxeA} is an ideal of 4. Now
x€A, is equivalent to I ¢p, so that if xeA,, for every maximal ideal
m then tel, thatis xeA. &

Remark. The above I is the ideal consisting of all possible denominators
of x when written as a fraction of elements of A4, together with 0, and this
can be called the ideal of denominators of x; similarly Ix can be called
the ideal of numerators of x.

Theorem 4.8. Let A be a ring and M a finite A-module. If M ®,x(m) =0
for every maximal ideal m then M =0.
Proof. k(m)= A, /m4,, so that M ®@«(m)=M,/mM, , and by NAK
(Theorem 2.2), M ® k(m)=0<>M, =0. Thus the assertion follows from
Theorem 46. m

The theorem just proved is easy, but we can-weaken the assumption
that M is finite over 4; we have the following result.

Theorem 4.9. Let f:A — B be a homomorphism of rings, and M a finite
B-modules; if M ®  x(p) =0 for every peSpec 4, then M =0.
Proof. 1f M # 0 then by Theorem 6 there is a maximal ideal P of B such
that M, #0, so that by NAK, Mp/PM, # 0. If we now set p = P A4 then,
since pMp = PMp, we have Mp/pMp#0. Set T=B—P and S=4 —p;
then the localisation Mg= M, of M as an 4-module and the localisation
M s, of M as a B-module coincide (both of them are {m/s|m # M, seS}).
We have f(S)c T, so that

Mp=M;= (Mf(S))T = (Mp)Ta
and hence

Mp/pMp = (M, /pM,)r = (M ®,x(p))r;
it follows that M ® k() #0. =
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Remark. In Theorem 4.9 we cannot restrict p to be a maximal ideal of
A. As one sees from the proof we have just given, M =0 provided that
M & k(p) =0 for every ideal p which is the restriction of a maximal ideal
of B. However, if for example (4, m} is a local integral domain with field
of fractions B, and M = B, then M ® k(m) = B/mB =0, but M #0.

Theorem 4.10. Let A be a ring and M a finite .4-module.
(i) For any non-negative integer r set

U, = {peSpec A|[M, can be generated over 4, by r elements};

then U, is an open subset of Spec A.
(i) If M is a module of finite presentation then the set

Up={peSpec A|M, is a free A,-module}
is open in Spec A4.
Proof . (i) Suppose that 4, =M w; + -+ 4 o, Each w; is of the form
; = m;/s; with 5,64 —p and m;e M, but since s; is a unit of 4, we can
replace w; by m;, and so assume that w; is (the image in M, of) an element
of M. Define a linear map ¢: A" — M from the direct sum of r copies of
Ato M by (ay,...,a,)—Y aw; and write C for the cokernel of ¢. Localising
the exact sequence A"— M — C—0 at a prime ideal q, we get an
exact sequence

A;— M, —C,—0,
and when g = p we get C, = 0. Cis a quotient of M, s0 is finitely generated,
so that the support Supp(C) is a closed set, and hence there is an open
neighbourhood V' of p such that C, = 0 for qe V. This means that V < U,.
(In short, if w;,...,w,eM generate M at p then they generate M for all q
in a neighbourhood of p.)

(ii) Suppose that M, is a free 4 ,-module, and let w,,...,w, be a basis.
As in (i) there is no loss of generality in assuming that w;e M. Moreover,
if we choose a suitable D(a) as a neighbourhood of p in Spec A, w,,..., o,
generate M_ for every qeD(a). Thus, replacing A by 4, and M by M,
we can assume that the elements w,..., o, satisfy M =" 4 ; for every
prime ideal q of A. Then by Theorem 6,

M/Y Aw; =0, thatis M =Aw; + -+ Ao,
(We think of replacing A by A, as shrinking SpecA down to the
neighbourhood D(a) of p.) Now, defining ¢: 4" —> M as above, and letting
K be its kernel, we get the exact sequence

0K —A"— M-0;
moreover, K, = 0. By Theorem 2.6, K is finitely generated, so that applying

4




§4

Localisation and Spec of a ring 29

(i) with r =0, we have that K =0 for every q in a neighbourhood V' of
p; this gives (4 ~M_ sothat Ve Up. =

4.1.

42.

4.3.

44.

4.5.

4.6.

4.7.

438.

49,

4.10.

4.11.

4.12,

Exercise to §4. Prove the following propositions.

The radical of a primary ideal is prime; also, if / is a proper ideal containing
a power m" of a maximal ideal m then I is primary and \/ I=m.
If P is a prime ideal of a ring A4 then the symbolic nth power of P is the ideal
P™ given by

P™ = P4, A.
This is a primary ideal with radical P.
If S is a multiplicative set of a ring A then Spec(4) is homeomorphic to
the subspace {p|p S = I} < Spec 4; this is in general neither open nor
closed in Spec 4.

If I is an ideal of A then Spec(4/I) is homeomorphic to the closed subset
V(I) of Spec A.

The spectrum of a ring Spec 4 is quasi-compact, that is, given an open
covering {U,},.x of X =Spec 4 (with X = | J,U,), a finite number of the
U, already cover X.

If Spec A is disconnected then A contains an idempotent e (an element e
satisfying e? = ) distinct from 0 and 1.

If A and B are rings then Spec (A4 x B) can be identified with the disjoint
union Spec A11SpecB, with both of these open and closed in
Spec (A x B).

If M is an A-module, N and N’ submodules of M, and Sc A4 a
multiplicative set, then Ngn Ng=(N nN');, where both sides are consi-
dered as subsets of M.

A topological space is said to be Noetherian if the closed sets satisfy the
descending chain condition. If 4 is a Noetherian ring then Spec A4 is a
Noetherian topological space. (Note that the converse is not true in
general.)

We say that a non-empty closed set V in a topological space is reducible if
it can be expressed as a union V =V, UV, of two strictly smaller closed
sets V, and V,, and irreducible if it does not have any such expression. If
peSpec A then V(p) is an irreducible closed set, and conversely every
irreducible closed set of Spec A can be written as V(p) for some peSpec 4.

Any closed subset of a Noetherian topological space can be written as a
union of finitely many irreducible closed sets.

Use the results of the previous two exercises to prove the following: for I a
proper ideal of a Noetherian ring, the set of prime ideals containing I has
only finitely many minimal elements.
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S The Hilbert Nullstellensatz and first steps in
dimension theory

Let X be a topological space; we consider strictly decreasing (or
strictly increasing) chains Z,, Z,..., Z, of length r of irreducible closed
subsets of X. The supremum of the lengths, taken over all such chains, is
called the combinatorial dimension of X and denoted dim X. If X is a
Noetherian space then there are no infinite strictly decreasing chains, but it
can nevertheless happen that dim X = co.

Let Y be asubspace of X. If S ¢ Y is anirreducible closed subset of Y then
its closure in X is an irreducible closed subset § = X such that SnY =S.
Indeed, if S = VU W with ¥ and W closedin X then S=(V nY)u(W N Y),
so that say S=VnY, but then V =3§. It follows easily from this that
dim Y <dim X.

Let 4 be a ring. The supremum of the lengths r, taken over all strictly
decreasing chains p, > p, o +* o p, of prime ideals of 4, is called the Krull
dimension, or simply the dimension of 4, and denoted dim 4. As one sees
easily from Ex. 4.10, the Krull dimension of 4 is the same thing as the
combinatorial dimension of Spec A. For a prime ideal p of A, the supremum
of the lengths, taken over all strictly decreasing chains of prime ideals
P=po 2Py 2 D p,starting from p, is called the height of p, and denoted
ht p; (if 4 is Noetherian it will be proved in Theorem 13.5 that ht p < o).
Moreover, the supremum of the lengths, taken over all strictly increasing
chain of prime ideals p =p, = p, = - < p, starting from p, is called the
coheight of p, and written coht p. It follows from the definitions that

htp=dimA4, cohtp=dimA/p and htp+ cohtp<dim 4.

Remark. In more old-fashioned terminology htp was>usually called the
rank of p, and cohtp the dimension of p; in addition, Nagata [N1] calls
dim A the altitude of A.

Example 1. The prime ideals in the ring Z of rational integers are the ideals
pZ generated by the primes p = 2, 3, 5,.. ., together with (0). Hence, every pZ
is 2 maximal ideal, and dimZ = 1. More generally, any principal ideal
domain which is not a field is one-dimensionail.

Example 2. An Artinian ring is zero-dimensional; indeed, we have seen in
the proof of Theorem 3.2 that there are only a finite number of maximal
ideals py,..., p,, and that the product of all of these is nilpotent. If then p is a
prime ideal, p © (0) = (p,...p,)" so that p > p, for some i; hence, p = p;, SO
that every prime ideal is maximal.

Example 3. A zero-dimensional integral domain is just a field.
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Example 4. The polynomial ring k[ X,,..., X, ] over a field k is an integral
domain, and since

KX e s X, /(X s X )~ k[ X g5 X0,
(X4,...,X,) is a prime ideal of k[X,,..., X,]. Thus

O (X)) =X, X)) e a(Xy,..., X,)
is a chain of prime ideals of length n, and dim k[ X {,..., X ] = n. In fact we
will shortly be proving that equality holds.

For an ideal I of a ring A we define the height of I to be the infimum of the
heights of prime ideals containing I:

htI =inf{htp|I < peSpec 4}.
Here also we have the inequality
ht ] + dim A/I < dim A.
If M is an A-module we define the dimension of M by
dim M = dim (4/ann (M)).
If M is finitely generated then dim M is the combinatorial dimension of the
closed subspace Supp (M) = V(ann(M)) of Spec A.

A strictly increasing (or decreasing) chain pg, py, . .. of prime ideals is said
to be saturated if there do not exist prime ideals strictly contained between
any two consecutive terms. We say that 4 is a catenary ring if the following
condition is satisfied; for any prime ideals p and p’ of 4 with p = p/, there
exists a saturated chain of prime ideals starting from p and ending at p’, and
all such chains have the same (finite) length.

If a local domain (A4, m) is catenary then for any prime ideal p we have
htp + cohtp = dim A. Conversely, if 4 is a Noetherian local domain and
this equality holds for all p then A is catenary (Ratliff [3], 1972); the proof
of this is difficult, and we postpone it to Theorem 31.4. Practically all the
important Noetherian rings arising in applications are known to be
catenary; the first example of a non-catenary Noetherian ring was
discovered in 1956 by Nagata [5].

We now spend some time discussing the elementary theory of dimensions
of rings which are finitely generated over a field k.

Theorem 5.1. Let k be a field, L an algebraic extension of k and
%ys...,0,€L; then

() kloy,. .. 0] =k(tg,...,a,).

(i) Write ¢@:k[X,,...,X,] —k(a,,...,a,) for the homomorphism
over k which maps X, to «;; then Ker ¢ is the maximal ideal generated
by n elements of the form f,(X,), f2(X,,X,)...., f.(X,,..., X,), where
each f; can be taken to be monic in X,.

Proof. Let f,(X) be the minimal polynomial of «; over k; then (f,(X,))isa
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maximal ideal of k[ X', ], so that k[a, ] ~ k[ X, ]/(f,(X))is a field, and hence
k[, ] = kla;). Now let ¢,(X) be the minimal polynomial of a, over k(u;);
then since k(o) =k[a,], the coefficients of @, can be expressed as
polynomials in «,, and there is a polynomial f,ek[ X, X,], monicin X,,
such that ¢,(X,) = f,(o,, X ;). Thus

ko, o5] = klong) [0 ] = Kl , 5) = k(o )[X 51/ 2 (01, X 5))-
Proceeding in the same way, for 1<i<n there is an
filX1,.. ., Xek[Xy,..., X;], monic in X, such that

k[og,..., 0] =klay,..., )

>k, 0 )X IS % g, X))

Now if P(X)ek[X,,...,X,] is in the kernel of ¢, we have @(P)=
Ploy,...,2,)=0, so that P(a,,...,a,_,,X,) is divisible by f.(a,...,
o,_1,X,); dividing P(X,,...,X,) as a polynomial in X, by the
monic polynomial f,(X,,..., X,)and letting R,(X4,..., X,) be the remain-
der, we can write P=0Q,f,+ R,, with R («,,...,a,_,,X,)=0. Similarly,
dividing R(X{,...,X,)asa polynomialin X, _, by f,_,(X4,..., X,_,)and
letting R, _(X,..., X,) be the remainder, we get

R,=Q, 1 fu-1+ Ry,
with

R, (g, 0,2, X1, X,)=0.

Proceeding in the same way we get P =Y Q,f; + R, with R(X ..., X,) =0;
thatis R=0and P =) Q,f;, so that Kero = (f,, f2,.... f,). W
The following theorem can be regarded as a converse of Theorem 1, (i).

Theorem 5.2. Letkbeafieldand 4 = kla,,...,a,] anintegral domain, and
write r = tr. deg, A4 for the transcendence degree of A (that is, of its field of
fractions) over k. Then if r >0, 4 is not a field.

Proof. Suppose that a,,...,«, is a transcendence basis for A over k, and set
K =kay,...,a,). Then since a,, ,...,, are algebraic over K, there exist
polynomials f;(X,,,,...,X;)eK[X,.,,..., X,], monicof degree d, in X,
such that

K[ar+15“"an] :K[Xr+17"',Xn]/(fr+1>""fn)
and

d;i=[K(t, 1, .., 0K, .00 ]
The coefficients of f; are in K, so that for suitable 0 # gek[«,,...,%,] we
have gfiekloy,...,0][X,+1,..., X,]. In other words, if we set B=
k[ay,...,0,,9 7 '] then the f; are polynomials with coefficients in B. We
are now going to show that A[g '] = Bl«, ., ,,...,%,] is 2 free module over
B with basis {] ]}, ,; |0 <e; < d,}. Every element of B[« , ;,...,%,] can
be written as P(«, 4 ,-..,«,) for some PeB[X,,,,...,X,]; dividing P as a
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polynomial in X, by f,, and replacing P by the remainder, we can assume
that P has degree at most d, — 1 in X; then dividing P as a polynomial
in X, by f.-1, and replacing by the remainder, we can assume that P
has degree at most d,_; — 1 in X,_;. Proceeding in the same way, we
can assume that P has degree at most d; — 1 in X, for each i; in addition,
the elements {af|0<e<d;} are linearly independent over K(a,,,...,
;_,). Hence A[g~'] is a free B-module. However, B is not a field; for
k[oy,-..,%,]1s a polynomial ring in r variables over k, and hence it contains
infinitely many irreducible polynomials (the proof of this is exactly the
same as Euclid’s proof that there exist infinitely many primes). Hence,
there is an irreducible polynomial hek[a,,...,«,] which does not divide
g, and then obviously h™'¢k[a,,...,a,,g ']. Therefore B contains an
ideal I with I #0, B, and since A[g~!] is a free module over B, IA[g ']
is a proper ideal of A[g~!]. Thus A[g~!] is not a ficld. But if 4 were a
field then we would have A[g~!]= A, and hence 4 is not a field. m

Theorem 5.3. Let k be a field, and let m be any maximal ideal of the
polynomial ring k[ X {,..., X, ]; then the residue class field k[ X {,..., X, ]/m
is algebraic over k. Hence m can be generated by n elements, and in
particular if k is algebraically closed then m is of the form m=
X{—oay,....X,—a,) for a;ck.
Proof. Setk[X,,...,X,]/m = K, and write a, for the image of X, in K; then
K =k[a,,...,a,]. By the previous theorem, since K is a field it is algebraic
over k, and then by Theorem 1, (ii), m is generated by n elements. If k is
algebraically closed then k = K, so that each X, is congruent modulo m to
some o;ek; then (X, —o,....,X,~a,)cm. On the other hand
(Xy—oay,...,X,—a,) is obviously a maximal ideal, so that equality must
hold. =

Let k& be a field and k its algebraic closure. Suppose that ®c
k[X,,...,X,]is a subset. An n-tuple o = («,...,a,) of elements o;ek is an
algebraic zero of ® if it satisfies f(x) = 0 for every f(X)e®.

Theorem 5.4 (The Hilbert Nullstellensatz).
(i) If @ is a subset of k[ X |,..., X,] which does ot have any algebraic
zeros then the ideal generated by @ contains 1.
(ii) Given a subset ® of K[ X,,..., X,] and an element fek[X,,...,X,],
suppose that /" vanishes at every algebraic zero of ®. Then some power of f
. belongs to the ideal generated by @, that is there exist v>0,
g.€k[X,,...,X,] and h;e® such that =3 gh,.
Proof. (i) Let I be the ideal generated by ®; if 1¢1 then there exists a
maximal ideal m containing I. By the previous theorem, k[ X ,,..., X, ]/m
is algebraic over k, so that it has a k-linear isomorphic embedding ¢ into
- k. If we set 8(X;mod m) =« then for all g(X)em we have 0 = 6(g(X)) =
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g(oty,...,a,), and therefore a =(a,,...,a,) is an algebraic zero of m, and
hence also of ®. This contradicts the hypothesis; hence, 1el.

(i) Inside k[ X 4, ..., X,,, Y] we consider theset ® U {1 — Y f(X)}; then this
set has no algebraic zeros, so that by (i) it generates the ideal (1). Therefore
there exists a relation of the form

1= P(X, V)h(X)+ O(X, Y)(1 - Y f(X)),
with h(X)e®. This is an identity in X,,..., X, and Y, so that it still holds if
we substitute Y = f(X)~'. Hence we have

1=3 P(X, [~ Hh{X),
so that multiplying through by a suitable power of f and clearing
denominators gives f¥=Y g(X)h(X), with g,ek[X,,...,X,] and
hie®. m
Remark. The above proof of (ii) is a classical idea due to Rabinowitch
(1].Inamodern form it can be given as follows: let [ « k[X,,..., X, ]= 4
be the ideal generated by ®; then in the localisation A ; with respect of f (see
§4, Example 1), we have I4; = A, so that a power of f is in [.

Theorem 5.5. Letkbealfield, 4 a ring which is finitely generated over k, and
I a proper ideal of A4; then the radical of I is the intersection of ali maximal
ideals containing I, that is \/I = ();c,.m.
Proof. Let A=k[a,,...,a,], so that 4 is a quotient of k[X,...,X,]
Considering the inverse image of I in k[ X] reduces to the case 4 = k[ X],
and the assertion follows from Theorem 4, (ii)). ®

Compared to the result \/ I={);cpP proved in §1, the conclusion of
Theorem 5 is much stronger. It is equivalent to the condition on a ring
that every prime ideal P should be expressible as an intersection of maximal
ideals. Rings for which this holds are called Hilbert rings or Jacobson
rings, and they have been studied independently by O. Goldmann [1] and
W. Krull [7]. See also Kaplansky [K] and Bourbaki [B5].
Theorem 5.6. Let k be a field and 4 an integral domain which is finitely
generated over k; then

dim 4 = tr.deg, 4.
Proof. Let A=k[X,,...,X,]/P, and set r=tr.deg, 4. To prove that
r=dim4 it is enough to show that if P and Q are prime ideals of
kK[X]=k[X{,...,X,] with Q= P and Q # P then
tr.deg, k[ X1/Q < tr.deg, k[ X]/P.

The k-algebra homomorphism k[ X]/P — k[ X 1/Q is onto, so that tr.deg;
k(X)/Q < tr.deg, k[ X]/P is obvious. Suppose that equality holds. Let

k[X1/P = k[a,,...,a,] and k[X1/Q =k[B,...,B,]; we can assume that
B,,..., B is a transcendence basis for k(f) over k. Then «,,..., «, are also
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algebraically independent over k, so that they form a transcendence basts
for k() over k. Now set S =k[X,,..., X,] — {0}; S is a multiplicative set in
k[X] with PnS=F and QnS=F. Setting R=k[X,,...,X,] and
K=kX,,...,X,), we have Rgy=K[X,.,,...,X,], and
Rg/PRg~klay, ..., 0 )00 1. .. 0],

so that Rg/PRg is algebraic over K =k(X,,...,X,) ~k(«,,...,,), and
therefore by Theorem 1, PRy is a maximal ideal of Rg; but this contradicts
the assumptions P Q with P#Q and QnS= (.

Now let us prove that r <dim A by induction on r. If »=0 then, by
Theorem 1, A is a field, so dim 4 = 0 and the assertion holds. Now let r > 0,
and suppose that 4 = k[«,,...,2,] with «; transcendental over k; setting
S=k[X,]— {0} and R=k[X,,...,X,] we get

Rg=k(X)[X,.....X,] and RgPRg~ki{x)|os,...,0,]
Hence Rg/PRg has transcendence degree r— 1 over k(X ), so that by
induction dim Ry/PRg = r — 1. Thus there exists a strictly increasing chain
PRy=Q,<=Q, =< @, , of primeideals of Rs. If we set P; = 0, R then
P, is a prime ideal of R disjoint from §; in particular, the residue class of
X, in R/P,_, is not algebraic over k, and so tr.deg, R/P,_;>0. Then
P,_, is not a maximal ideal of R by Theorem 3, and therefore R has a
maximal ideal P, strictly bigger than P, _,. HencedimA=cohtP>r. m

Corollary. 1f k is a field then dimk[X,,..., X, ] =n.

We now turn to a different topic, the theorem of Forster and Swan on the
number of generators of a module. Let 4 be a ring and M a finite 4A-module;
for peSpec A, write k(p) for the residue field of A, and let u(p, M) denote the
dimension over (p) of the vector space M ® k(p) = M,/pM, (in the usual
sense of linear algebra). This is the cardinality of a minimal basis of the
A,-module M. Hence, if p = p’ then u(p, M) = u(p’, M).

In 1964 the young function-theorist O. Forster surprised the experts in
algebra by proving the following theorem [1].

Theorem 5.7. Let A be a Noetherian ring and M a finite A-module. Set
b(M) = sup {u(p, M) + coht p|peSupp M};
then M can be generated by at most h(M) elements.

This theorem is a very important link between the number of local and
global generators. However, there was room for improvement in the bound
- for the number of generators, and in no time R. Swan obtained a better
bound. We will prove Swan’s bound. For this we need the concept of j-Spec
A introduced by Swan. This is a space having the same irreducible closed
subsets as m-Spec A, but has the advantage of having a ‘generic point’, not
present in m-Spec A, for every irreducible closed subset.
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A prime ideal which can be expressed as an intersection of maximal
ideals is called a j-prime ideal, and we write j-Spec 4 for the set of all
j-prime ideals. We consider j-Spec A4 also with its topology as a subspace
of Spec A. Set M =m-Spec A and J =j-Spec A. If F is a closed subset of
J then there is an ideal I of 4 such that F = ¥ (I)nJ. One sees easily that
a prime ideal P belongs to F if and only if P can be expressed as an
intersection of elements of F~M = V(I)rnM. Hence F is determined by
FnM, so that there is a natural one-to-one correspondence between
closed subsets of J and of M. It follows that if M is Noetherian so is J,
and they both have the same combinatorial dimension. Now let B be an
irreducible closed subset of J, and let P be the intersection of all the
elements of B. If B=V({)nJ then 1P and we can also write
B=V(P)nd. If P is not a prime ideal then there exist f, geA4 such that
f¢P, g¢P and fgeP; but then

B=WVEP+ fANHUV(P+gA)nD),
and by definition of P there is a Qe B not containing fand a Q'eB not
containing g, which implies that B is reducible, a contradiction. Therefore
P is a prime ideal. Hence PeB and B= V(P)nJ. This P is called the
generic point of B. Conversely if P is any element of J then V(P)nJ is
an irreducible closed subset of J, and is the closure in J of {P}. We will
write j-dim P for the combinatorial dimension of V(P)nJ.

For a finite A-module M and peJ we set

o apy {0 T Mo =0
P 2= jdim p + u(p, My if M, £0.

Theorem 5.8 (Swan [1]). Let A4 be a ring, and suppose that m-Spec A4 is
a Noetherian space. Let M be a finite A-module. If
sup {b(p, M)|pej-Spec A} =r < ©

then M is generated by at most r elements.
Proof.

Step 1. For peSpecA and xeM, we will say that x is basic at p if x
has non-zero image in M ® k(p). It is easy to see that this condition is
equivalent to u(p, M/Ax) = u(p, M) — L.

Lemma. Let M be a finite A-module and p,,...,p,e Supp (M). Then there
exists xe M which is basic at each of p,,...,p,.

Proof. By reordering p,,...,p, We assume that p; is maximal among
{Pi»Pit15-.-,P,) for each i. By induction on n suppose that x’e M is basic at
Py,...,P,_ . If X' is basic at p, then we can take x = x". Suppose then that x’
is not basic at p,. By assumption M, # 0 so that we can choose some yeM
which is basic at p,. We have p,...p,_ | & p., so that if we take an element
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aEp, ... Pn—1 DOt belonging to p, and set x = x’ + ay, this x satisfies our
requirements. This proves the lemma.

Step 2. Setting sup {b(p, M)|p€ej-Spec A} = r, we now show that there are
just a finite number of primes p such that b(p, M) =r. Indeed, for n=
1,2,..., the subset X, = {pej-Spec 4| u(p, M) = n} is closed in j-Spec 4 by
Theorem 4.10; it has a finite number of irreducible components (by
Ex. 4.11), and we let p,; (for 1 <i<v,) be their generic points. If M is
generated by s elements then X, = (¥ for n> s, so that the set {p,;},; is
finite. Let us prove that if b(p,M)=r then pe{p,},; Suppose
u(p, M) =n; then peX,, so that by construction p > p,; for some i. But
if p # p,; then j-dim p < j-dim p,,;, and since p(p, M) = n = u(p,;, M) we have
b(p, M) < b(p,;, M), which is a contradiction. Hence p = p,,;.

Step 3. Let us choose an element xe M which is basic for each of the
finitely many primes p with b(p, M) =r, and set M = M/Ax; then clearly
b(p, M) < r — 1 for every pej-Spec A. Hence by induction M is generated by
r — 1 elements, and therefore M by r elements. m

Swan’s paper contains a proof of the following generalisation to non-
commutative rings: let A be a commutative ring, A a possibly non-
commutative A-algebra and M a finite left A-module. Suppose that
m-Spec 4 is Noetherian, and that for every maximal ideal p of A4 the
A,-module M is generated by at most r elements; then M is generated as a
A-module by at most r+d elements, where d is the combinatorial
dimension of m-Spec A.

The Forster—Swan theorem is a statement that local properties imply
global ones; remarkable results in this direction have been obtained by
Mohan Kumar [2] (see also Cowsik-Nori [1] and Eisenbud-Evans [1],
[2]). The number of generators of ideals in local rings is the subject of
a nice book by J. Sally [Sa].

Exercises to §5. Prove the following propositions.

5.1. Let k be a field, R=k[X,,...,X,] and let PeSpecR; then htP +
coht P=n.

5.2. A zero-dimensional Noetherian ring is Artinian (the converse to Example
2 above).

6 Associated primes and primary decomposition

Most readers will presumably have come across primary decom-
position of ideals in Noetherian rings. This was the first big theorem
obtained by Emmy Noether in her abstract treatment of commutative
rings. Nowadays, as exemplified by Bourbaki [B4], the notion of associated
prime is considered more important than primary decomposition itself.
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Let A be a ring and M an A-module. A prime ideal P of A4 is called an
associated prime ideal of M if P is the annihilator ann(x) of some xe M. The
set of associated primes of M is written Ass(M) or Ass ,(M). For I an ideal
of A, the associated primes of the A-module A/I are referred to as the prime
divisors of I. We say that ae A is a zero-divisor for M if there is a non-zero
xeM such that ax = 0, and otherwise that a is M-regular.

Theorem 6.1. Let A be a Noetherian ring and M a non-zero A-module.

(i) Every maximal element of the family of ideals F = {ann (x)|0 # xe M}
is an associated prime of M, and in particular Ass(M) # .

(ii) The set of zero-divisors for M is the union of all the associated primes
of M.
Proof. (i) We have to prove that if ann (x) 1s a maximal element of F then it
is prime: if a, be A are such that abx =0 but bx # 0 then by maximality
ann (bx) = ann(x); hence, ax = 0.

(1)) If ax =0 for some x #0 then acann(x)eF, and by (i) there is an
associated prime of M containing ann(x). R

Theorem 6.2. Let S = A be a multiplicative set, and N an Ag-module.
Viewing Spec (A4g) as a subset of Spec 4, we have Ass,(N) = Ass, (N). If A
is Noetherian then for an A-module M we have Ass(Mg)-=-
Ass(M)nSpec(Ay).

Proof. For xeN we have ann,(x) = ann, (x)n 4, so that if PeAss,(N)
then P AeAss, (N). Conversely if peAss, (N} and we choose xeN
such that p = ann ,(x) then x # 0, and hence, pn S = J and pA is a prime
ideal of A5 with pAg=ann, (x). For the second part, if peAss(M)n
Spec(Ag) then pnS = ¢, and p = ann ,(x) for some xeM; if (a/s)x =0 in
My then there is a teS such that tax=0 in M, and tép, tacp gives
aep, so that ann, (x)=pAs and pAgeAss(Mg). Conversely, if Pe
Ass(Mg) then without loss of generality we have P = ann, (x) with xe M.
Setting p = PN A we have P = pAg. Now p is finitely generated since A4 is
Noetherian, and it follows that there exists some teS such that p=
ann ,(tx). Therefore peAss (M). R

Corollary. For a Noetherian ring 4, an A-module M and a prime ideal P of
A we have
PeAss (M)<PApeAss, (Mp).

Theorem 6.3. Let A be a ring and 0->M — M — M"—0 an exact
sequence of 4-modules; then

Ass(M) < Ass (M')u Ass(M”).
Proof. 1f PeAss(M) then M contains a submodule N isomorphic to 4/P.
Since P is prime, for any non-zero element x of N we have ann(x)=P.
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Therefore if N M’ #0 we have PeAss(M'). If Nn M’ = 0 then the image
of N in M” is also isomorphic to 4/P, so that PeAss(M"). m

Theorem 6.4. Let A be a Noetherian ring and M # 0 a finite A-module.
Then there exists a chain0 = My <« M| - =« M, = M of submodules of M
such that for each i we have M;/M;_, ~ A/P; with P,eSpec 4.

Proof. Choose any P, eAss(M); then there exists a submodule M, of M
with M, ~ A/P,. If M| # M and we choose any P,eAss(M/M ) then there
exists M, = M such that M,/M, ~ A/P,. Continuing in the same way and
using the ascending chain condition, we eventually arrive at M, =M. =

Theorem 6.5. Let A be a Noetherian ring and M a finite 4-module.

(i) Ass(M) is a finite set.

(iiy Ass(M)c Supp(M).

(iii) The set of minimal elements of Ass(M) and of Supp (M) coincide.
Proof. (i) follows from the previous two theorems; we need only note
that Ass(A4/P)={P}. For (ii), if 0> A/P — M is exact then so is 0—
Ap/PAp —> Mp, and therefore Mp +# 0. For (iii) it is enough to show that
if P is a minimal element of Supp (M) then PeAss(M). We have Mp #0
so that by Theorem 2 and (i),

& # Ass(Mp) = Ass (M) Spec(Ap) = Supp (M) Spec(Ap)
={P}.
Therefore we must have PeAss(M). m

Let A be a Noetherian ring and M afinite A-module. Let P,, ..., P, be the
minimal elements of Supp (M); then Supp (M) = V(P,)u---u V(P,), and the
V(P) are the irreducible components of the closed set Supp(M) (see
Ex. 4.11). The prime ideals P,,..., P, are called the isolated associated
primes of M, and the remaining associated primes of M are called embedded
primes. If I is an ideal of 4 then Supp,(4/I) is the set of prime ideals
containing I, and the minimal prime divisors of I (that is the minimal
associated primes of the A-module A/I) are precisely the minimal prime
ideals containing I. We have seen in Ex. 4.12 that there are only a finite
number of such primes, and Theorem 5 now gives a new proof of this.
(For examples of embedded primes see Ex. 6.6 and Ex. 8.9.)

Definition. Let A be a ring, M an A-module and N = M a submodule. We
say that N is a primary submodule of M if the following condition holds for
all ae 4 and xeM:

X¢N and axeN=a"M c N for some v.

This definition in fact only depends on the quotient module M/N. It can be
Iestated as

if aed is a zero-divisor for M/N then ae\/(ann (M/N)).
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A primary ideal is just a primary submodule of the 4-module 4. One
might wonder about trying to set up a notion of prime submodule
generalising prime ideal, but this does not turn out to be useful.

Theorem 6.6. Let A be a Noetherian ring and M a finite A-module. Then a
submodule N = M is primary if and only if Ass(M/N) consists of one
element only. In this case, if Ass(M/N) = {P} and ann (M/N) =1 then [ is
primary and \/ I=P.

Proof. If Ass(M/N)={P} then by the previous theorem Supp(M/N)=
V(P), so that P = \/(ann {M/N)}). Now if ac A is a zero-divisor for M/N it
follows from Theorem 1 that aeP, so that ae\/ (ann (M/N)); hence, N is a
primary submodule of M. Conversely, if N is a primary submodule and
PeAss(M/N) then every aeP is a zero-divisor for M/N, so that by
assumption ae\/ I, where I =ann(M/N). Hence Pc\/I, but from the
definition of associated prime we obviously have I < P, and hence \/ IcP,
sothat P = \/I. Thus Ass (M/N) has just one element \/I. We prove that in
this case I is a primary ideal: let a, be 4 with b¢l; if abel then ab(M/N) =0,
but H(M/N)+#0, so that a is a zero-divisor for M/N, and therefore
aeP = \/ I. m

Definition. If Ass(M/N)={P} we say that Nc M is a P-primary sub-
module, or a primary submodule belonging to P.

Theorem 6.7. 1f N and N’ are P-primary submodules of M thensois NnN".
Proof. We can embed M/(N n N’) as a submodule of (M/N)@® (M/N’), so
that

Ass(M/(NAN')) = Ass(M/N)UAss(M/N)={P}. m

If N = M is a submodule, we say that N is reducible if it can be written as
an intersection N = N, N, of two submodules N, N, with N, # N, and
otherwise that N is irreducible; note that this has nothing to do with the
notion of irreducible modules in representation theory (= no submodules
other than 0 and M), which is a condition on M only.

If M is a Noetherian module then any submodule N of M can be written
as a finite intersection of irreducible submodules. Proof: let # be the set
of submodules N = M having no such expression. If # # ¢ then it has a
maximal element N,. Then N, is reducible, so that No= N, N,, and
N,;¢%. Now each of the N, is an intersection of a finite number of
irreducible submodules, and hence so is N,. This is a contradiction.

Remark. The representation as an intersection of irreducible submodules is‘
in general not unique. For example, if A is a field and M an n-dimensional,
vector space over A then the irreducible submoduies of M are just itsf
(n — 1)-dimensional subspaces. An (n — 2)-dimensional subspace can be
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written in lots of ways as an intersection of (n — 1)-dimensional subspaces.

In general we say that an expression of a set N as an intersection
N=N;nnN, is irredundant if we cannot omit any N, that is if
N#ZN;nnN._;nN; ;nnN,. If M is an A-module, we call an
expression N = N,;n-n N, of asubmodule N as an intersection of a finite
number of submodules N; < M a decomposition of N, if each of the N, is
irreducible we speak of an irreducible decomposition, if primary of a primary
decomposition. Let N = N, n--*n N, be an irredundant primary decompo-
sition with Ass (M/N)) = {P;}; if P, =P, then N;n N, is again primary, so
that grouping together all of the N; belonging to the same prime ideal we get
a primary decomposition such that P; # P, for i #j. A decomposition with
this property will be called a shortest primary decomposition, and the N,
appearing in it the primary components of N; if N; belongs to a prime P we
sometimes say that N; is the P-primary component of N.

Theorem 6.8. Let A be a Noetherian ring and M a finite A-module.

(i) An irreducible submodule of M is a primary submodule.

(i) If

N=N;nnN, with Ass(M/N)={P;}

is an irredundant primary decomposition of a proper submodule N =« M
then Ass(M/N)={P,,...,P,}.

(iii) Every proper submodule N of M has a primary decomposition. If N is
a proper submodule of M and P is a minimal associated prime of M/N then
the P-primary component of N is ¢, !(Np), where ¢p:M — M, is the
canonical map, and therefore it is uniquely determined by M, N and P.
Proof. (i) It is enough to prove that a submodule N = M which is not
primary is reducible: replacing M by M/N we can assume that N = (. By
Theorem 6, Ass (M) has at least two elements P, and P,. Then M contains
submodules K; isomorphic to 4/P; for i = 1,2. Now since ann (x) = P, for
any non-zero xeK;, we must have K, nK, =0, and hence 0 is reducible.

(i) We can again assume that N=0. If 0=N,n--AN, then M is
isomorphic to a submodule of M /N, @® - ®M/N,, so that

Ass(M) Ass(@ M/N,-> ={) Ass(M/N)={P,,...,P,}.
i=1 i=1
On the other hand N, -~ AN, %0, and taking 0 # xeN, AN, we
have ann (x)=0:x= N, :x. But N,:M is a primary ideal belonging to P, so
that P{ M = N, for some v > 0. Therefore P} x = 0; hence there exists i > 0
Such that Pix#0 but Pi*'x=0, and choosing 0 # yeP\x we have
P1y=0. However, since yeN,n AN, it follows that y¢N,, and by
the definition of primary submodule ann(y) < P, so that P, = ann(y) and
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P, eAss(M). The same works for the other P;, and this proves that
{P,...,P,} = Ass(M).

(iii) We have already seen that a proper submodule has an irreducible
decomposition, so that by (i) it has a primary decomposition. Suppose that
N=N;n NN, is a shortest primary decomposition, and that N, is the
P-primary component with P=P,. By Ex.4.8 we know that N, =
(N)pn-n(N,jp, and for i > 1 a power of P; is contained in ann (M/N);
then since P; & P, we have (M/N,), = 0, and therefore (N;), = M,. Thus
Np=(N,)p, and hence @5 '(Np)= @7 ((N,)p); it is easy to check that
the right-hand side is N,. =

Remark. The uniqueness of the P-primary component N, proved in (iii) for
minimal primes P, does not hold in general; see Ex. 6.6.

Exercises to §6.

6.1. Find Ass(M) for the Z-module M =Z ®(Z/3Z).

6.2. If M is a finite module over a Noetherian ring 4, and M,, M, are
submodules of M with M =M + M, then can we say that Ass(M)=
Ass(M)uAss{M,)?

6.3. Let A be a Noetherian ring and let xe 4 be an element which is neither a
unit nor a zero-divisor; prove that the ideals x4 and x"4 forn=1,2...
have the same prime divisors:

Ass  (A/xA) = Ass (A/x"A).

6.4. Let I and J be ideals of a Noetherian ring 4. Prove that if JA4, < [ A, for
every PeAss,(A/I) then J < .

6.5. Prove that the total ring of fractions of a reduced Noetherian ring 4 is a
direct product of fields.

6.6. (Taken from [Nor 1], p. 30.) Let k be a field. Show thatin k[ X, Y] we have
XLXY)=(X)n(XLY)=(X)n(X%, XY, Y

6.7. Let f:A —> B be a homomorphism of Noetherian rings, and M a finite B-
module. Write *f:SpecB —> Spec A as in §4. Prove that *f(Assz(M)) =
Ass (M). (Consequently, Ass (M) is a finite set for such M.)

Appendix to §6. Secondary representations of a module

I.G. Macdonald [1] has developed the theory of attached prime ideals
and secondary representations of a module, which is in a certain sense
dual to the theory of associated prime ideals and primary decompositions.
This theory was successfully applied to the theory of local cohomology
by him and R.Y. Sharp (Macdonald & Sharp [1], Sharp [7]).

Let A be a commutative ring. An A-module M is said to be secondary
if M#0 and, for each aed, the endomorphism ¢, M — M defined
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by ¢,(m) = am (for me M) is either surjective or nilpotent. If M is secondary,
then P = ./(ann M) is a prime ideal, and M is said to be P-secondary. Any
non-zero quotient of a P-secondary module is P-secondary.

Example 1. If Ais anintegral domain, its quotient field K is a (0)-secondary
A-module.

Example 2. Let W = Z[p~ '], where p is a prime number, and consider the
Artinian Z-module W/Z (see §3). This is also a (0)-secondary Z-module.

Example 3. If A is alocal ring with maximal ideal P and if every element of
P is nilpotent, then A itself is a P-secondary A-module.

Example 4. If P is a maximal ideal of 4, then A/P" is a P-secondary A-
module for every n> 0.

A secondary representation of an A-module M is an expression of M as a
finite sum of secondary submodules:

*)» M=N,+-+N,

The representation is minimal if (1) the prime ideals P;: = \/ (ann N,) are all
distinct, and (2) none of the N, is redundant. It is easy to see that the sum of
two P-secondary submodules is again P-secondary, hence if M has a
secondary representation then it has a minimal one.

A prime ideal P is called an attached prime ideal of M if M has a P-
secondary quotient. The set of the attached prime ideals of M is denoted by
Att(M).

Theorem 6.9. 1f (¥) is a minimal secondary representation of M and P, =
J/(@nn N)), then Att (M) = {P,,...,P,}.

Proof. Since M/(N, + -+ N,_| + N;,{ + -+ N,) is a non-zero quotient
of N, it is a P,-secondary module. Thus {P,,...,P,} = Att(M). Conver-
SEly, let PeAtt(M) and let W be a P-secondary quotient of M. Then W =
N{+ -+ N,, where N, is the image of N, in W. From this we obtain a
minimal secondary representation W =N, +--+ N,, and then
Att(W)> {P,,...,P,}. On the other hand Att(W)={P} since W is

P-secondary. Therefore P = P, for some i. m

Theorem 6.10. If 0->M'— M —M" -0 is an exact sequence of
A-modules, then Att(M") < Att(M) < Att(M') U Att(M").

Proof. The first inclusion is trivial from the definition. For the second, let
PeAtt(M) and let N be a submodule such that M/N is P-secondary. If
M + N =M then M /N is a non-trivial quotient of M’, hence PeAtt(M').
If M’ + N # M then M/(M' + N) is a non-trivial quotient of M” as well
as of M/N, hence M” has a P-secondary quotient and PeAtt(M”). m



44 Prime ideals

An A-module M is said to be sum-irreducible if it is neither zero nor the
sum of two proper submodules.

Lemma. If M is Artinian and sum-irreducible, then it is secondary.
Proof. Suppose M is not secondary. Then there is ae 4 such that M # aM
and @"M # 0 for all n > 0. Since M is Artinian, we have a"M = a"*'M for
some n. Set K = {xeM|a"x =0}. Then it is immediate that M = K + aM,
and so M is not sum-irreducible. m

Theorem 6.11. If M is Artinian, then it has a secondary representation.
Proof. Similar to the proof of Theorem 6.8, (iii). m

The class of modules which have secondary representations is larger
than that of Artinian modules. Sharp [8] proved that an injective module
over a Noetherian ring has a secondary representation.

Exercises to Appendix to §6.

6.8. An A-module M is coprimary if Ass(M) has just one element. Show that a
finite module M # 0 over a Noetherian ring A is coprimary if and only if
the following condition is satisfied: for every ae A, the endomorphism
a:M — M is either injective or nilpotent. In this case Ass M = {P}.
where P = /(ann M).

6.9. Show that if M is an A-module of finite length then M is coprimary if and
only if it is secondary. Show also that such a module M is a direct sum of
secondary modules belonging to maximal ideals, and Ass(M) = Att(M).
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Properties of extension rings

Flatness was formulated by Serre in the 1950s and quickly grew into one of
the basic tools of both algebraic geometry and commutative algebra. This is
an algebraic notion which is hard to grasp geometrically. Flatness is defined
quite generally for modules, but is particularly important for extensions of
rings. The model case is that of completion. Complete local rings have a
number of wonderful properties, and passing to the completion of a local
ring is an effective technique in many cases; this is analogous to studying an
algebraic variety as an analytic space. The theory of integral extension of
rings had been studied by Krull, and he discovered the so-called going-up
and going-down theorems. We show that the going-down theorem also
holds for flat extensions, and gather together flatness, completion and
integral extensions in this chapter. We will use more sophisticated argu-
ments to study flatness over Noetherian rings in Chapter 8, and completion
in Chapter 10.

7 Flatness
Let A be a ring and M an A-module. Writing % to stand for a
sequence —-— N —N—N"—- of A-modules and linear

maps, we let ¥ ® M, or simply & ® M stand for the induced sequence -
— NQM-—>NIM-—>N"QM-— .

Definition. M is flat over A if for every exact sequence . the sequence
& ®,4M is again exact. We sometimes shorten this to A-flat.
M is faithfully flat if for every sequence ¥,
& 1s exact<=¥ ®,M is exact.

Any exact sequence . can be broken up into short exact sequences of
the form 0—» N, — N, — N, —0, so that in the definition of flatness
we need only consider short exact sequences . Moreover, in view of the
right-exactness of tensor product (see Appendix A, Formula 8), we can
restrict attention to exact sequences ¥ of the form 0 - N, — N, and
need only check the exactness of F@M: 0->N, @M — N M.

If f:4 — Bis a homomorphism of rings and B is flat as an A-module,

45
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we say that [ is a flat homomorphism, or that B is a flat A-algebra. For
example, the localisation A of 4 is a flat A-algebra (Theorems 4.4 and 4.5).
Transitivity. Let B be an 4-algebraand M a B-module. Then the following
hold;

(1) B is flat over 4 and M is flat over B=M is flat over 4;

(2) B is faithfully flat over 4 and M is faithfully flat over B=M is
faithfully flat over 4;

(3) M is faithfully flat over B and flat over A=-B is flat over A;

(4) M is faithfully flat over both 4 and B=> B is faithfully flat over 4.
Each of these follows easily from the fact that (¥ ®,B) ®sM = ¥ ® (B for
any sequence of A-modules ..

Change of coefficient ring. Let B be an A-algebra and M an A-module.
Then the following hold:

(1) M is flat over A=M ®,B is flat over B;

(2) M is faithfully flat over A =M ®,B is faithfully flat over B.

These follow from that fact that ¥ ®z(B&® M)=S&®,M for any
sequence of B-modules 7.

Theorem 7.1. Let 4 — B be a homomorphism of rings and M a B-
module. A necessary and sufficient condition for M to be flat over 4 is that
for every prime ideal P of B, the localisation M, is flat over 4, where
p =P A (or the same condition for every maximal ideal P of B).
Proof. First of all we make the following observation: if S 4 is a
multiplicative set and M, N are A;-modules, then M ®, N =M@, N.
This follows from the fact that in N ®, M we have

a ax S SX a a
Tx@y="0Y X e¥_ g%,
S S S N S S

for xeM, yeN, acA4 and seS. (In general, if B is an A-algebra and
M and N are B-modules, it can be seen from the construction of the tensor
product that M ®; N is the quotient of M ®, N by the submodule generated
by {bx®y — x®by|xeM, yeN and beB}.)

Assume now that M is A-flat. The map 4 — B induces 4, — Bp,
and Mp is a Bp-module, therefore an 4 -module. Let % be an exact
sequence of A -modules; then, by the above observation,

y®AvMP: L QMp= (S ®,M)RDpBp,
and the right-hand side is an exact sequence, so that M, is A4 -flat.

Next, suppose that M is A -flat for every maximal ideal P of B.
Let 0N — N be an exact sequence of A-modules, and write K
for the kernel of the B-linear map N'®,M — N®,M, so that
0-K—>N®M-—N®M is an exact sequence of B-modules. For
any Pem-Spec B the localisation
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0->Kp—NQM,—NQM
is exact, and since N’®AMP=N’®A(AP®APMP)=N;®AvMP, and
similarly N® ;Mp=N,®, Mp, we have Kp=0 by hypothesis. There-
fore by Theorem 4.6 we have K =0, and this is what we have to prove.

Theorem 7.2. Let A be a ring and M an 4-module. Then the following
conditions are equivalent:

(1) M is faithfully flat over 4;

(2) M is A-flat, and N ®,M # 0 for any non-zero A-module N;

(3) M is A-flat, and mM # M for every maximal ideal m of 4.
Proof. (1)=(2). Let ¥ be the sequence 0 >N —0. If N® M =0 then
S ®M is exact, so & is exact, and therefore N =0.

(2)=(3). This is clear from M/mM =(4/m)®,M

(3)=(2). If N #0 and 0# xeN then Ax ~ A/ann(x), so that taking a
maximal ideal m containing ann(x), we have M # mM >ann(x)-M
hence, Ax® M #0. By the flatness assumption, Ax@®M — N M is
injective, so that N® M 0.

(2)=(1). Consider a sequence of 4-modules

SN LN N
If
FOMNOMIANOM SN QM

is exact then gy fyr =(g° )y =0, so that by flatness, Im(ge /)@ M =
Im(g,° fr) = 0. By assumption we then have Im(ge> f) =0, thatis go f =0,
hence Kerg > Im f. If we set H = Kerg/Im f then by flatness,
H®M =Ker(g,)/Im(fy) =0,

so that the assumption gives H = 0. Therefore & is exact. W

A ring homomorphism f:4 —> B induces a map °f:SpecB — Spec 4,
under which a point peSpecA has an inverse image °f !(p)=
{PeSpecB|PnA4 = p} which is homeomorphic to Spec(B®,x(p)).
Indeed, setting C = B®,x(p) and S =4 — p, and defining g:B— C by
g(b)=b® 1, then since k(p)=(A/p)® A, we have

C=B®,(A/p) QA5 = (B/pB)s = (B/pB)ys)-
Thus %:Spec C —s Spec B has the image
{PeSpec B|P = pB and Pn f(S) = ¢}
= {PeSpec B|Pn A =p},

:VhiCh is °f"(p), and °g induces a homomorphism of SpecC with
S !(p). For this reason we call SpecC = Spec(B® x(p)) the fibre over p.
The inverse map *f ~!(p) —> SpecC takes Pe’f ~(p) into PC = PBq/pB.
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For P*eSpecC we set P = P*\ B; then by Theorems 4.2 and 4.3, we have
P*=PC and Cp = (Bs/pBglpc = Bp/PBp = Bp @,k (p).

Theorem 7.3. Let f:A— B be a ring homomorphism and M a B-

module. Then

(i) M is faithfully flat over A=>“f(Supp(M))= Spec 4.

(i) If M is a finite B-module then
M is A-flat and °f(Supp(M)) > m-Spec A<M is faithfully flat over A.
Proof. (i) For peSpec A, by faithful flatness we have M ® 4k (p) # 0. Hence,
if we set C=B®,k(p) and M'=M®, k(p)=M&sC, the C-module
M' #0, so that there is a P*eSpecC such that Mjp.#£0. Now set
P = P*nB; then

Mpo =M QCp. =M Qp(Bp ®BPCP*) =M, ®BPCP*
so that M, #0, that is PeSupp(M). But P*eSpec(B® «(p)), so that as
we have seen P A = p. Therefore pef (Supp(M)).
(i) It is enough to show that M /mM # 0 for any maximal idcal m of 4. By
assumption there is a prime ideal P of B such that Pn4=m and
M, #0. By NAK, since M, is finite over Bp we have Mp/PM, # 0, and
a fortiori Mp/mM,=(M/mM)p #0, so that M/mM#0. H

Let (4, m) and (B,n) be local rings, and f:4 — B a ring homomor-
phism; £ is said to be a local homomorphism if f(m) < n. If this happens then
by Theorem 2, or by Theorem 3, (ii), we see that it is equivalent to say that /
is flat or faithfully flat.

Let S be a multiplicative set of A. Then it is easy to see that Spec(As)
—Specd is surjective only if S consists of units, that is 4 = A;. Thus
from the above theorem, if A # Ag then Ag is flat but not faithfully flat over
A.

Theorem 7 4.
(i) Let A4 be a ring, M a flat A-module, and N,, N, two submodules of an
A-module N. Then as submodules of N® M we have

(N AN)OM =(N, ® M) (N, ®M).
(i) Let A— B be a flat ring homomorphism, and let 7, and I, be
ideals of A. Then

(I;nI)B=1,BnI,B.
(iii) If in addition I, is finitely generated then
(I;:I,)B=1,B:1,B.
Proof. (1) Define ¢:N — N/N, @ N/N, by ¢(x)=(x+ N,, x + N,); then
0-N,AnN,—N-—N/N;@®N/N, is exact, and hence so is
0-(N,nN,))OM —-NOM —
(NOM)/(N,;®M)D(NQM)/N,®M).
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This is the assertion in (i).
(i) This is a particular case of (i} with N = A, M = B, in view of the fact
that for an ideal I of 4 the subset I ® ,B of A ®,B = B coincides with IB.
(i) If I, = Aa, +--* + Aa, then since (I,:1,)=((I,:a;), we can use
(i) to reduce to the case that I, is principal. For ae A we have the exact
sequence

0—(I:Aa)— A - AJI,
and tensoring this with B gives the assertion. W

Example. Let k be a field, and consider the subring 4 = k[x?, x*] of the
polynomial ring B = k[x] in an indeterminate x. Then x*4 n x*A4 is the set
of polynomials made up of terms of degree > 5 in x, so that (x?4 ~x>A)B
= x°B, but on the other hand x?B~ x?B = x>B. Therefore by the above
theorem, B is not flat over A.

Theorem 7.5. Let f:A — B be a faithfully flat ring homomorphism.

(i) For any A-module M, the map M — M ®, B defined by m—,m® 1
is injective; in particular f:4 — B is itself injective.

(i) If I is an ideal of 4 then IBnA =1
Proof. (i) Let 0 # meM. Then (Am)® B is a B-submodule of M ® B which
can be identified with (m ® 1) B. But by Theorem 2, (Am)® B # 0, so that
m®1+#0.

(i) follows by applying (i) to M = A/I, using (4/I)® B = B/IB.

Theorem 7.6. Let A be a ring and M a flat A-module. If a;;6 4 and x;eM
(for 1 <i<rand 1 <j< n)satisfy

Y a;x;=0 forall i

fi

then there exists an integer s and by e A, y,eM (for1 <j<nand 1 <k <)
such that

Y.ayby=0 forall ik and x;=3 byy, forall j.
J J

Thus the solutions in a flat module M of a system of simultancous linear
equations with coefficients in A can be expressed as a linear combination of
solutions in 4. Conversely, if the above conclusion holds for the case of a
single equation (that is for r = 1), then M is flat.

Proof. Set ¢:A" — A" for the linear map defined by the matrix («;;), and
let ¢,:M"— M" be the same thing for M; then ¢,, = ¢ ® |, where 1 is
the identity map of M. Setting K = Ker ¢ and tensoring the exact sequence

K — A" 2 47 with M, we get the exact sequence

i®l P
KM -—>M—5M.
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By assumption ¢, (x,,...,x,) =0, so that we can write
(Xgy. X)) =((® 1) (Z ﬂk®yk) with ,eK and y.eM.

If we write out f, as an element of A" in the form B, = (by,, ..., b,) with
b, eA then the conclusion follows. The converse will be proved after the
next theorem. M

Theorem 7.7. Let A be aring and M an A-module. Then M is flat over A4 if
and only if for every finitely generated ideal I of 4 the canonical map
I®,M— A®,M is injective, and therefore I@ M ~IM.
Proof. The ‘only if” is obvious, and we prove the ‘if’. Firstly, every ideal
of A is the direct limit of the finitely generated ideals contained in it, so
that by Theorems Al and A2 of Appendix A, I ® M — M is injective for
every ideal I. Moreover, if N is an 4-module and N’ = N a submodule,
then since N is the direct limit of modules of the form N’ + F, with F
finitely generated, to prove that N@ M — N® M is injective we can
assume that N=N'+ Aw, +'+ Aw, Then setting N,=N + Aw,
+-+ Aw; (for 1 <i<n), we need only show that each step in the
chain
NOM-—N, @M —-N,@M ——NQM
is injective, and finally that if N=N'+ Aw then NOM —NQ®M
is injective. Now we set [ = {acA|aweN'}, and get the exact sequence
0N —N-—A/I-0.

This induces a long exact sequence (see Appendix B, p. 279)

< —Tor(M, A/) — N' ® M — N@M — (A/H® M —0;
hence it is enough to prove that

(*)y Tor{(M,A/l)=

For this consider the short exact sequence

0->1—A—A/I-0
and the induced long exact sequence

Tord(M, 4)=0 —Tor{(M, A/I) —IQM — M —
since I @ M — M is injective, (¥) must hold. H

From this theorem we can prove the converse of Theorem 6. Indeed, if

I=Aa, + -+ Aa, is a finitely generated ideal of A then an element ¢ of
I ® M can be written as ¢ = Y} a;® m, with m;e M. Suppose that £ is 0 in M,
that is that ) a,m, = 0. Now if the conclusion of Theorem 6 holds for M,
there exist b;;e4 and y;,eM such that

Yab;=0 forallj, and m=3)b;y;, forall i
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Then C = Zai ® m; = ZiZiaibij®yj = 0’ SO that I ® M—M iS injec-
tive, and therefore M is flat.

Theorem7.8. Let A be a ring and M an A-module. The following
conditions are equivalent:

(1) M is flat;

(2) for every A-module N we have Tor{(M,N)=0;

(3) Tor{(M, A/I)= 0 for every finitely generated ideal .
Proof. (1)=(2) If we let —+—L,—L_,——Li—N->0
be a projective resolution of N then

“"’_’Li®M_’LiA1®M———’"'—*LO®M

is exact, so that Tor(M,N)=0 for all i > 0.

(2)=(3) is obvious.

(3)=>(1) The short exact sequence 0—1—A4—A4/I>0 induces a
long exact sequence

Tor{(M,A/l)=0—IQM —M—M® A4/1 >0,

and hence ] ® M — M is injective; therefore by the previous theorem M
is flat. m

Theorem 7.9. Let 0-M'— M — M"” -0 be an exact sequence of A4-
modules; then if M’ and M" are both flat, so is M.
Proof. For any A-module N the sequence Tor,(M’', N)— Tor,(M, N)
—sTor,;(M", N) is exact, and since the first and third groups are zero,
also Tor,(M, N) = 0. Therefore by the previous theorem M is flat. &

A free module is obvious faithfully flat (if F is free and & is a sequence of
. A-modules then & ® F is just a sum of copies of ¥ in number equal to the
cardinality of a basis of F). Conversely, over a local ring the following
theorem holds, so that for finite modules flat, faithfully flat and free are
equivalent conditions.

Theorem 7.10. Let (A, m) be a local ring and M a flat 4-module. If
X1,...,X,€M are such that their images X,,...,%, in M = M/mM are
!inearly independent over the field 4A/m then x,,...,x, are linearly
mfiependent over A. Hence if M is finite, or if m is nilpotent, then any
minimal basis of M (see §2) is a basis of M, and M is a free module.
Proof. By induction on n. If n=1, and ae4 is such that ax, =0 then
by Theorem 6 there are b, ,...,b,e4 such that ab; =0 and xey b;M; by
assumption x, ¢ mM, so that among the b, there must be one not contained
In m. This b, is then a unit, so that we must have a = 0.

Forn>1,let ¥ a,x;=0; then there are b;,e A and y,eM (for 1 <j<s)
Suchthat}" a,b,; = Oand x, = Y b;;y;. Now x,¢mM, so that among the b, ; at
least one is a unit. Hence q, is a linear combination of a4,....,q,_,, that
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is a,= Y "2 a,c; for some c;e A. Therefore we have

a (X ey xp) (X + 61 X)) =0
however, the (n — 1) elements X, + ¢,X,,..., %, + G, X, of M are linearly
independent over A/m, so that by induction, a; =--- = a,., = 0. Hence also
a,=0.

Theorem 7.11. Let A be a ring, M and N two A-modules, and B a flat 4-
algebra. If M is of finite presentation then we have

Hom (M, N)®, B = Homy(M ®,B, N ®, B).

Proof. Fixing N and B, we define contravariant functors F and G of an
A-module M by
F(M)=Hom ,(M,N)®,B
and
G(M) = Homp(M ®,B,N ®,B);
then we can define a morphism of functors A:F — G by
MfRb)=b(f®1l) for feHom,(M,N) and beB.
Both F and G are left-exact functors.
Now if M is of finite presentation there is an exact sequence of the form
AP — 4 — M — 0, and from this we get a commutative diagram
0— F(M)—> F(A%) — F(47)
il il 3
0- G(M) — G(A47) — G(A47)
having two exact rows. Now F(47) = N?® B and G(A*) = (N ® B)?, so that
the right-hand 1 is an isomorphism, and similarly the middle 4 is an
isomorphism. Thus, as one sees easily, the left-hand 1 is also an
isomorphism. ®

Corollary. Let A, M and N be as in the theorem, and let p be a prime ideal of
A. Then
Hom (M, N)®,4, = HomAp(Mp, N,).

Theorem 7.12. Let A be a ring and M an A-module of finite presentation.
Then M is a projective A-module if and only if M, is a free 4,,-module for
every maximal ideal m of 4.
Proof of ‘onlyif”. If M is projective it is a direct summand of a free module,
and this property is preserved by localisation, so that M, is projective over
A, and is therefore free by Theorem 2.5.
Proof of ‘if’. Let N, — N,—0 be an exact sequence of A-modules.
Write C for the cokernel of

Hom (M, N,) — Hom (M, N,);
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then for any maximal ideal m of A we have
C,= Coker{HomAm(Mm, (N}),) — Hom, (M, (N,),)} =0.

Hence C =0 by Theorem 4.6, and this is what we had to prove. ®

Corollary. 1f Ais aring and M is an A-module of finite presentation, then
M is flat if and only if it is projective.
Proof . This follows from Theorems 1, 12 and 10

Exercises to §7. Prove the following propositions.
7.1. If B is a faithfully flat A4-algebra then for an 4-module M we have
B®, M is B-flat<> M is A-flat,
and similarly for faithfully flat.

7.2. Let 4 and B be integral domains with 4 < B, and suppose that 4 and B
have the same field of fractions; if B is faithfully flat over A then 4 = B.

7.3. Let B be afaithfully flat A-algebra; for an 4-module M we can view M asa
submodule of B&®, M (by Theorem 7.5). Then if {m;} is a subset of M
which generates B® M over B, it also generates M over 4.

7.4. Let A be a Noetherian ring and {M},., a family of flat 4-modules; then
the direct product module ]_[ 1eaM is also flat. In particular the formal
power series A[X,,..., X, ] is a flat 4-algebra (Chase [1]).

7.5. Let 4 be a ring and N a flat A-module; if ae 4 is A-regular, it is also N-
regular.

7.6. Let A be a ring, and C, a complex of A-modules; for an 4-module N we
write C,®N for the complex - —C;,, QN —C,®N —---. If
N is flat over 4 then H{(C,)QN = H(C.® N) for all i.

7.7. Let A be a ring and B a flat A-algebra; then if M and N are A-modules,
Tor (M, N)®,B=Tor}(M®@B, N®B) forall i
If in addition M is finitely generated and A is Noetherian then
Ext{ (M, N)®, B = Ext4(M ®,B, N®,B) for all i.
7.8. Theorem 7.4, (i) does not hold for the intersection of infinitely many
submodules; explain why, and construct a counter-example.

79. If Bis a faithfully flat A-algebra and B is Noetherian then 4 is Noetherian.

Appendix to §7. Pure submodules

_Let Abearing and M an A-module. A submodule N of M is said to be pure
if the sequence 0 - N ® E — M ® E is exact for every A-module E. Since
tensor product and exactness commute with inductive limits, we need only
consider A-modules E of finite presentation.
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Example 1. If M/N is a flat A-module, then N is a pure submodule of
M. This follows from the exact sequence Tor{(M/N.E}-——N®E
— MQE.

Example 2. Any direct summand of M is a pure submodule.

Example 3. If A =7, a submodule N of M is pure if and only if NnmM
=mN for all m > 0. In fact the condition is equivalent to the exactness
of 0= N®Z/mZ — M ®Z/mZ, and every finitely generated Z-module
is a direct sum of cyclic modules.

Theorem 7.13. A submodule N of M is pure if and only if the following
condition holds: if x;=373_, a;m; (for 1 <i<r), with myeM, x;e N and
a;;€A, then there exist y;eN (for 1<j<s) such that Xp = 5o 14,Y;
(for 1<i<r).

Proof. Suppose N is pure in M. Consider the free module A" with basis
ey,...,e,and let D be the submodule of A" generated by ) ;a;;e;, 1 <j < 5. Set
E = A"/D, and let &; denote the image of ¢; in E. Then in M ® E we have

in®éi= Zzaij’nj®éi= Z"h@ Y a;e,=0,
i [ J i

hence Y x;®e¢; = 0in N ® E by purity. But this means that, in N ® A’, the
element Y ;x;®e¢; is of the form ) ;y;® Y ;a;;¢; for some y;eN.
Conversely, suppose the condition is satisfied. Let E be an A-module of
finite presentation. Then we can write E = A"/D with D generated by a finite
number of elements of A, say Y- a;e, 1<j<s. Then reversing the
preceding argument we can see that NQ E — M ® E is injective. W

Theorem 7.14. If N is a pure submodule and M/N is of finite presentation,
then N is a direct summand of M.

Proof. We will prove that 0—N — M —>M/N -0 splits, where i
and p are the natural maps. For this we need only construct a lincar map
f:M/N — M such that pf is the identity map of M/N. Let {t,,...,t,}
be a set of generators of M/N, so that M/N ~ A"/R, where R is the
submodule of relations among the ¢;; let {(a;,...,a,)]1 <i<s} be a
set of generators of R. Choose a pre-image ¢; of ¢; in M for each j. Then
set ;=% a;;¢,€N (for 1 <i<s). By the preceding theorem there exist
€N such that n;=Y a;;¢; (for 1 <i<s). Then ) a;;(¢;—&;) =0 (for
1 <i<s),and setting f(1;) = &; — &), we obtain a linear map f:M/N — M
which satisfies the requirement. ®
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8 Completion and the Artin—Rees lemma

Let A be a ring and M an A-module; for a directed set A, suppose
that # = {M,},. is a family of submodules of M indexed by A and such
that A < u=M;, > M. Then taking # as a system of neighbourhoods of 0
makes M into a topological group under addition. In this topology, for any
xeM a system of neighbourhoods of x is given by {x + M },.,. In M
addition and subtraction are continuous, as is scalar multiplication x+>ax
forany ac 4. When M = A each M, is an ideal, so that multiplication is also
continuous:

(@a+MYb+My)cab+ M,

This type of topology is called a linear topology on M; it is separated
(that is, Hausdorff) if and only if (),M, =0. Each M, = M is an open set,
each coset x + M, is again open, and the complement M — M, of M is a
union of cosets, so is also open. Hence M, is an open and closed subset;
the quotient module M/M, is then discrete in the quotient topology.

M/(); M is called the separated module associated with M. Moreover,
since for A<y there is a natural linear map ¢, M/M,— M/M,,
we can construct the inverse system {M/M;; ¢,,} of A-modules; its
inverse limit lim M/M  is called the completion of M, and is written M.
We give each M/M  the discrete topology, the direct product | |, M/M , the
product topology, and M the subspace topology in [],M/M;. Let
Y: M — M be the natural A-linear map; then y is continuous, and y(M) is
dense in M. Write p;: M — M/M, for the projection, and set Kerp, =
M?¥; it is easy to see that the topology of M coincides with the linear
topology defined by # = {M%*}, .. The map p, is surjective (in fact
pi(W(M))= M/M,)), so that M/M*¥~M/M,, and the completion of M
coincides with M itself. If y: M — M is an isomorphism, we say that M
is complete. (Caution: in Bourbaki terminology this is ‘complete and
separated’; we shorten this to ‘complete’ throughout.)

If #'={M,},.r is another family of submodules of M indexed by a
directed set T, then # and %" give the same topology on M if and only if for
each M there is a yel such that M|, = M, and for every M thereis a ucA
such that M, = M’,. It is then easy to see that there is an isomorphism of
topological modules (liLnM/Mi :lir_nM/Mf,,. Thus M depends only on
the topology of M, as does the question of whether M is complete.

When M = A, {M/M_; ¢,,} becomes an inverse system of rings, M = 4
is a ring, and y:4~— A a ring homomorphism. M* c 4 is not just
an A-submodule, but an ideal of A; this is clear from the fact that
p,@ff—»A/M,1 is a ring homomorphism.

If N = M is a submodule, then the closure N of N in M is given by the
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following formula:
A

Indeed,
xeNe(x+M)NN % foralli
<xeN+ M, forall
If we write M, for the image of M, in the quotient module M/N, the
quotient topology of M/N is just the linear topology defined by {M’},_,.
In fact, let G = M be the inverse image of G' < M/N; then
G’ is open in the quotient topology of M/N
<G is open in M
< for every xeG there is an M, such that x + M, = G
<> for every xX'e G’ there is an M’, such that x' + M}, < G'.
Hence the condition for M/N to be separated is that (), M} =0, that is
(VN + M;)= N, or in other words, that N is closed in M. Moreover, the
subspace topology of N is clearly the same thing as the linear topology
defined by {NnM,}, . Set M/N = M’; then
0->N/INnM;)——>M/M; ~— M /M,=M|N+M;)-0
is an exact sequence, so that taking the inverse limit, we. see that
0->N— M —(M/N)
isexact. If we view N as a submodule of M, the condition that & = (£,),..e M
belongs to N is that each &, can be represented by an element of N, or in
other words that Eey(N) + M* for each 4. Hence N is the same thing as the
closure of y(N) in M. In general it is not clear whether M —s (M/N) is
surjective, but this holds in the case A = {1,2,...}. In fact then
(M/NY = limM/(N + M,
given an elementrl & =(&,8,...)e(M/NY, with &eM/N +M,), let
x,;€M be an inverse image of &,, and y,eM an inverse image of {;
then y, — x,eN + M, so that we can write
V,—X,=t+m, with teN and m,eM,.
If we set x, = y, —t then x,&M is also an inverse image of &,, and satisfies
X, — x; €M, . Similarly we can successively choose inverse images x,e M of
the £, in such a way thatforn=1,2,..., we have x,, ; — x,eM,,. If we set
é,.eM/M, for the image of x,, then by construction & =(¢,,&,,...) is an
clement of lim M/M,= M which maps to & in (M/N) . This proves the
following theorem.
Theorem 8.1. Let A be a ring, M an A-module with a linear topology, and
N cM a submodule. We give N the subspace topology, and M/N the
quotient topology. Then these are both linear topologies, and we have:
(i) 0> N — M —(M/N)" is an exact sequence, and N is the closure
of Y(N) in M, where y: M — M is the natural map.
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(i) If moreover the topology of M is defined by a decreasing chain of
submodules M, > M, >+, then

0->N-—M-—(M/N) -0
is exact. In other words, (M/N) ~M/N. =

Now suppose that M and N are two A-modules with linear topologies,
and let f:M — N be a continuous linear map. If the topologies of M and
N are given by {M;};.a and {N,},., then for any yel there
exists A€A such that M, < f~YN,). Define (py:]\'/?—>N/Ny as the
composite M — M/M* — N/N,, where the first arrow is the natural
map, and the second is induced by f; one sees at once that ¢, does not
depend on the choice of 4 for which M; = f~!(N). Also, for y <y if we
let ., denote the natural map N/N,,— N/N,, it is easy to see that
@,=V,,°¢,; hence there is a continuous linear map fiM—N
defined by the (¢,),.r, and the following diagram is commutative (the
vertical arrows are the natural maps):

M LN

|

!

Moreover, f is determined uniquely by this diagram and by continuity.
Similarly, if 4 and B are rings with linear topologies, and f:4— B is
a continuous ring homomorphism, then f induces a continuous ring
homomorphism f:4 —s B.

Among the linear topologies, those defined by ideals are of particular
importance. Let I be an ideal of 4 and M an A-module; the topology on M
defined by {I"M},_, , _is called the I-adic topology. If we also give A the I-
adic topology, the completions 4 and M of 4 and M are called I-adic
completions; it is easy to see that M is an A-module: for x=(a,a,,...)
eAwitha,e A/I"and & = (x,,X,,...)e M with x,e M/I"M (for all n), we can
just set

af =(a,x,,a,x,,...)eM.

As one can easily check, to say that M is complete for the /-adic topology is
equivalent to saying that for every sequence X, X,,... of elements of M
satisfying x; — x;, ,eI'M for all i, there exists a unique xe M such that
x—x;el'M for all i. We can define a Cauchy sequence in M in the usual
way ({x;} is Cauchy if and only if for every positive integer r there is an
hy such that x,,, — x,eI"M for n>n,), and completeness can then be
expressed as saying that a Cauchy sequence has a unique limit.

Theorem 8.2. Let A be a ring, I an ideal, and M an 4-module.
(1) If A is I-adically complete then I = rad (A);
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(i) If M is I-adically complete and ael, then multiplication by 1 + aisan
automorphism of M.
Proof. (i) For ael, 1 —a +a*—a’ + -+ converges in A, and provides an
inverse of 1+ a; hence 1 +a is a unit of 4. This means (see §1) that
I crad(A4).

(ii) M is also an A-module, and 1 + a (or rather, its image in A) is a unit in
A, so that this is clear. =

The following two results show the usefulness of completeness.

Theorem 8.3 (Hensel’s lemma). Let (A4, m, k) be a local ring, and suppose
that A4 is m-adically complete. Let F(X)e A[ X] be a monic polynomial, and
let Fek[X] be the polynomial obtained by reducing the coefficients of F
modulo m. If there are monic polynomials g, hek[X] with (g,h)=1
and such that F = gh, then there exist monic polynomials G, H with coeffi-
cients in 4 such that F=GH, G=g and H=h.
Proof. 1f we take polynomials G,, H,e A[ X ] suchthatg = G,,h= H, then
F =G,H, mod m[X]. Suppose by induction that monic polynomials G,,
H, have been constructed such that F = G,H, modm"{X], and G, =g,
H, = h; then we can write

F—GH,=Y 0U(X), with wem" and degU,<degF.
Since (g, h) = 1 we can find v,, w,ek[ X ] such that U, = gv, + hw,. Replacing
v; by its remainder modulo h, and making the corresponding correction to
w; we can assume degv; < degh. Then

deghw, =deg(U, —gv)) <degF, hencedegw,<degg.
Choosing V,, W,eA[X] such that V,=v, degV,=degv, W,=w,
deg W;=degw;,, and setting G,.,=G,+Y oW, H,.,=H,+>wV,
we get

F=G,, H, ,modm"*[X].
We construct in this way sequences of polynomials G,, H,forn=1,2,...;
then lim G, = G and lim H, = H clearly exist and satisfy F = GH. Obvi-
ously, G=G,=¢g,H=H,=h. m

Theorem 8.4. Let A be a ring, [ an ideal, and M and A-module. Suppose
that A is I-adically complete, and M is separated for the I-adic topology. If
M/IM is generated over A/l by @,,...,®,, and w,eM is an arbitrary
inverse image of @, in M, then M is generated over A by w,,...,®,.

Proof. By assumption M =Y Aw; + IM,so that M =Y Aw; +1(} Aw; +
IM)=Y Aw;+ I*M, and similarly, M =Y Aw;+ I'M for all v>0. For
any eM, write & =Y ao; + &, with & €IM, then &, =Y a; ;w; + £, with
a; €l and &,eI*M, and choose successively a; ,€I" and ¢,el"M to satisfy

¢ = Za,-,va),-—i- Eopq for v=12,....
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Then a; + a;; + a; , + - converges in A. If we set b; for this sum then

€~Z":b.-w,~e (N I'M=(0). =

v>0

This theorem is extremely handy for proving the finiteness of M. For a
Noetherian ring A, the [-adic topology has several more important
properties, which are based on the following theorem, proved independ-
ently by E. Artin and D. Rees.

Theorem 8.5 (the Artin—Rees lemma). Let 4 be a Noetherian ring, M a
finite A-module, N = M a submodule, and I an ideal of A. Then there exists
a positive integer ¢ such that for every n > ¢, we have
I"M N =1""9(I‘'MnN).

Proof. The inclusion > is obvious, so that we only have to provec.
Suppose that [ is generated by r elements a,,..., q,, and M by s elements
®y,...,®e An eclement of I"M can be written as Y3 fiaw,, where
f{X)= f{Xy,...,X,) is a homogeneous polynomial of degree n with
coefficients in A. Now set A[X,,...,X,]~= B, and for each n> 0 set

£l

J.= {(fl,...,fs)eBs

/i are homogeneous of degree n
and Y fila)w,eN

let C < B® be the B-submodule generated by U,, s 0Jx- Since Bis Noetherian,
C is a finite B-module, so that C=)%_, Bu;, where each u; is a linear
combination of elements of | JJ,; therefore C is generated by finitely
many elements of | )J,. Suppose

C=Bu,+ +Bu,, where u;=(u;,...,u)et, forl<j<t

Setc=max {d,,...,d}. Nowifne"M n N, we can writen = ) fi(a)o; with
(fi,..., f9eJ,, and hence

(fiseo s f)=2.p(X)u;, with p;eB=A[X,,....X,].
The left-hand side is a vector made up of homogeneous polynomials of
degree n only, so that the terms of degree other than n on the right-hand side
must cancel out to give 0. Hence we can suppose that the p;(X) are
homogeneous of degree n—d,. Then n=Y fi@w, =Y pia)Y ula)w,
and ) .u;(a)w,eI“M NN, so that if n>c, pa)el”™“I*™%, giving

nel" (I°'MnN) forany n>c¢c. ®
Theorem 8.6. In the notation of the above theorem, the I-adic topology of
N coincides with the topology induced by the I-adic topology of M on the
subspace N = M.
Proof. By the previous theorem, for n>c¢, we have I"'NcI"M NN
SI""°N. The topology of N as a subspace of M is the linear topology
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Theorem 8.7. Let A be a Noetherian ring, I and ideal, and M a finite A-

module. Writing M, 4 for the I-adic completions of M and 4 we have
M®A~M.

Hence if A is [-adically complete, so is M.

Proof. By Theorems 1 and 6, the I-adic completion of an exact sequence of

finite A-modules is again exact. Now given M, let A? — A*— M -0 be

an exact sequence; the commutative diagram

A — AT — M -0

I 1 [
APRA—AQA-—MRA-0
has exact rows. Here the vertical arrows are the natural maps; since
completion commutes with direct sums, the two left-hand arrows are
obviously isomorphisms, and hence the right-hand arrow is an
isomorphism, as required. W

Theorem 8.8. Let A be a Noetherian ring, I an ideal, and A4 the I-adic
completion of 4; then A is flat over A.

Proof. By Theorem 7.7 it is enough to show that a® A — 4 is injective
for every ideal a = 4; but a® A = 4, and by Theorems 1 and 6, 6 — A4 is
injective. W

Theorem 8.9 (Krull). Let A be a Noetherian ring, I an ideal, and M
a finite A-module; set ﬂ,,>0 I"'M = N. Then there exists ac 4 such that
a=1modI and aN =0.

Proof. By NAK, it is enough to show that N =IN. By the Artin-Rees
lemma, ["M N N < IN for sufficiently large n; now by definition of N, the
left-hand side coincides with N.

Theorem 8.10 (the Krull intersection theorem).

(i) Let A be a Noetherian ring and I an ideal of A4 with I < rad 4; then for
any finite A-module the /-adic topology is separated, and any submodule is
a closed set.

(ii) If A is a Noetherian integral domain and I < 4 a proper ideal, then

N I"=(0).

n>0

Proof. (i) In this case the a of the previous theorem is a unit of A4, so that
N =0, and M is separated. If M’ < M is a submodule then M/M’ is also
I-adically separated, which is the same as saying that M’ is closed in M.

(i) Setting M = A in the previous theorem, from 1¢1 we get that a #0,
and since a is not a zero-divisor, N=0. =
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Theorem 8.11. Let A be a Noetherian ring, I and J ideals of 4, and M a
finite A-module; write " for the completion of an A-module in the I-adic
topology, and ¥:M — M for the natural map. Then

(JM) = JM = the closure of Y(JM) in M,

and

(M/IM) =M/JM.
Proof . By Theorems 1 and 6, (J M) is the kernel of M —s (M/J M), and
this is equal to the closure of ¥(JM) in M by Theorem 1. Now suppose J
=Y74;A4 and define p:M"-— M by ({,,....¢) — Y a;&. Then the
sequence

MM 5 MM -0,
where p is the natural map, is exact. The I-adic completion,
M M (MITMY >0,

is again exact. On the other hand ¢ is given by the same formula
€1y 8 Y ai; as @, hence (UMY =Ker(t)=Im(@)=YaM=JM. N

As is easily seen, the (X ,,. .., X,)-adic completion of the polynomial ring
A[X,,...,X,] over A can be identified with the formal power series ring
A[X,,...,X,] . Using this we get the following theorem.

Theorem 8.12. Let A be a Noetherian ring, and I =(ay,...,a,) an ideal of
A. Then the I-adic completion 4 of A is isomorphic to A[X,...,X,]/
(X, —ay,...,X,—a,). Hence A4 is a Noetherian ring.

Proof. Let B=A[X,,...,X,], and set I'=) X,;B, J=) (X, —a)B;
then B/J ~ A, and the I'-adic topology on A considered as the B- module
B/J coincides with the I-adic topology of A. Now writing ~ for the I’-adic
completion of B-modules, we have

A=B/f=BjJB=A[X,,....X, /X, —a;,....X,~a,). W

Theorem 8.13. Let A be a Noetherian ring, I an ideal, M a finite A-module,
and M the [-adic completion of M; then the topology of M is the I-adic
topology of M as an A-module, and is the I4-adic topology of M as
an A-module.

Proof. If we let M¥ be the kernel of the map from M= hm (M/I"M) to
M/I"M, the topology of M is that defined by {M*}. Thus it is enough to
prove that M#* = I"M. Since M/I"M is discrete in the I-adic topology, we
have (M/I"M)"= M/I"M and the kernel of M — (M/I"M)" is I"M by
Theorem 11. Therefore M* = I"AT. Moreover, I"M can also be written
(I"A)M, and ["4 = (IA)", so that the topology of M is also the I4-adic
topology.
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Theorem 8.14. Let A be a Noetherian ring and I an ideal. If we consider 4
with the I-adic topology, the following conditions are equivalent:

(1) I crad(A),

(2) every ideal of A is a closed set;

(3) the I-adic completion 4 of A is faithfully flat over A.

Proof. We have already seen (1)=(2).

(2)=(3) Since 4 is flat over A, we need only prove that mA4 # A4 for every
maximal ideal m of 4. By assumption, {0} is closed in A4, so that we can
assume that 4 < A, and by Theorem 11, m4 is the closure of m in A.
However, m is closed in 4, so that mAn A4 =m, and so m4 # 4.

(3) =(1) By Theorem 7.5, mA N A = m for every maximal ideal m of A.
Now mA c A4 is a closed set by Theorems 2, (i) and 10, (i), and since the
natural map A — A is continuous, m = mAN A is closed in A. If I ¢ m.
then I" + m = A for every n >0, so that mt is not closed. Thus Icm. m

If the conditions of the above theorem are satisfied, the topological ring 4
is said to be a Zariski ring, and I an ideal of definition of A. An ideal of
definition is not uniquely determined; any ideal defining the same topology
wili do. The most important example of a Zariski ring is a Noetherian local
ring (A, m) with the m-adic topology. When discussing the completion of a
local ring, we will mean the m-adic completion unless otherwise specified.

Theorem 8.15. Let A be a semilocal ring with maximal ideals m,,..., m,,
and set | =rad(4)=m,m,...m,. Then the I-adic completion 4 of 4
decomposes as a direct product.
A=A, x x4,
where A, = A,,, and 4, is the completion of the local ring A;.
Proof. Since for i #j and any n>0 we have m} + m} = A, Theorem 1.4
gives
A= A/m} x - x A/m} for n>0.
Hence taking the limit we get
A= lim A/I"=(lim A/m") x - x (lim A/m}).
— — —
If we set A, for the localisation of A at m;, then, since 4/m/ is already local,
Afmi = (A/mf),, = A/ (mA4)",
and so hm A/mf can be 1dent1ﬁed with 4, ®
We now summarise the main points proved in this section for a local
Noetherian ring. Let (4, m) be a local Noetherian ring; then we have:

(1) (Yu>o m"=(0).
(2) For M a finite A-module and N =« M a submodule,

() (N+m"M)=N.

n>0
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(3) The completion A of A is faithfully flat over A; hence A < A4, and
JAnA =1 for any ideal I of A.

4 A is again a Noetherian local ring, with maximal ideal mA, and it has
the same residue class field as 4; moreover, A/m"A = A/m" for all n> 0.

(S)Ifdisa complete local ring, then for any ideal I # A4, A/ is again a
complete local ring.

Remark 1. Even if A is complete, the localisation A4, of 4 at a prime p may
not be.

Remark 2. An Artinian local ring (4, m) is complete; in fact, it is clear from
the proof of Theorem 3.2 that there exists a v such that m* =0, so that
A= Llr_n Am" = A,

Exercises to §8. Prove the following propositions.

8.1. If Ais a Noetherian ring, I and J are ideals of A4, and A is complete both for
the I-adic and J-adic topologies, then A4 is also complete for the (I + J)-
adic topology.

8.2. Let A be a Noetherian ring, and [ o J ideals of A4; if A is I-adically
complete, it is also J-adically complete.

8.3. Let 4 be a Zariski ring and A its completion. If a = A is an ideal such that
aA is principal, then a is principal.

8.4. According to Theorem 8.12, if ye(),I" then

ye i (X;—a)Al X, ... X,

i=1
Verify this directly in the special case [ = eA, where e? =¢.

8.5. Let 4 be a Noetherian ring and I a proper ideal of A4; consider the
multiplicative set S = 1 4 [ as in §4, Example 3. Then Ay is a Zariski ring
with ideal of definition /4g, and its completion coincides with the I-adic
completion of A.

8.6. If A is [-adically complete then B = A[ X] is (/ B + X B)-adically complete.

8.7. Let(A, m)be a complete Noetherian local ring, and a; = a, = ---achain of
ideals of A for which (),a, = (0); then for each n there exists v(n) for which
a,,y < m” In other words, the linear topology defined by {a,},—; ., is
stronger than or equal to the m-adic topology (Chevalley’s theorem).

8.8. Let A be a Noetherian ring, a,,..., a, ideals of 4; if M is a finite A-module
and N ¢ M a submodule, then there exists ¢ > 0 such that

npze,...,mz2c=al...afyMnN=a}"%.. a" “af...aiMNN),

8.9. Let A be a Noetherian ring and PeAss(4). Then there is an integer ¢ > 0
such that Pe Ass (A/I) for every ideal I = P* (hint: localise at P).

8.10. Show by example that the conclusion of Ex. 8.7. does not necessarily hold
if Ais not complete.



64 Properties of extension rings

9 Integral extensions

If A is a subring of a ring B we say that B is an extension ring of A.
In this case, an element be B is said to be integral over A if b is a root of a
monic polynomial with coefficients in A, that is if there is a relation of the
form b" + a,b" ! + .- + a, =0 with g;eA. If every clement of B is integral
over A we say that Bis integral over A, or that Bis an integral extension of A.

Theorem 9.1. Let A be a ring and B an extension of 4.

(i) An element beB is integral over A if and only if there exists a ring C
with 4 € C = B and beC such that C is finitely generated as an A-module.

(ii) Let A < B be the set of elements of B integral over A; then 4 is
a subring of B.
Proof. (i) If b is a root of f(X)=X"+a, X"+ +a,, for any P(X)e
A[X] let r(X) be the remainder of P on dividing by f; then P(b)=r(b)
and degr < n. Hence

A=A+ Ab+ -+ A",

so that we can take C to be A[b]. Conversely if an extensionring Cof Ais a
finite A-module then every element of C is integral over A: for if C = Aw,
+ -+ Aw, and beC then

bw;=Y a;w; with a,€eA,
J

so that by Theorem 2.1 we get a relation b” + a;b" ™! + - + g, = 0.(The left-
hand side is obtained by expanding out det(bd;; — a;)).)

(ii) If b, b’ A then we see easily that A[b, b'] is finitely generated as an A-
module, so that its elements bb’ and b + b’ are integral over 4. ®

The A appearing in (i) above is called the integral closure of A in B; if
A = A we say that A is integrally closed in B. In particular, if 4 is an integral
domain, and 1s integrally closed in its field of fractions, we say that 4 1s an
integrally closed domain. If for every prime ideal p of A the localisation A4, is
an integrally closed domain we say that A is a normal ring.

Remark. ‘Normal ring’ is often used to mean ‘integrally closed domain’; in
this book we follow the usage of Serre and Grothendieck. If 4 is a
Noetherian ring which is normal in our sense, and p,,...,p, are all
the minimal prime ideals of A then it can be seen (see Ex. 9.11) that
A~A/p, x - x A/p,, and then each A/p, is an integrally closed domain
(sce Theorem 4.7). Conversely, the direct product of a finite number of
integrally closed domains is normal (see Example 3 below).

Let A = C < B be a chain of ring extensions; if an clement be B is integral
over C and C is integral over 4 then b is integral over A. Indeed, if
b"+ ¢ b" "1+ -+ ¢, =0 with ¢,eC then

n—1
Alc,,....c, b} = ,ZOA[C“""C”]bv’
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and since Afe,,...,c,] is a finite A-module, so is A[cy,...,c,,b]. In
particular, if we take C to be the integral closure 4 of 4 in B we see that
4 is integrally closed in B.

Example I. A UFD is an integrally closed domain — the proof is easy.

Example 2. Let k be a field and t an indeterminate over k; set A=
k[t t3] = B=k[t]. Then 4 and B both have the same field of fractions
K = k(). Since B is a UFD, it is integrally closed; but ¢ is integral over
A, so that B is the integral closure of 4 in K.

Note that in this example 4 ~k[X,Y]/(Y?— X3). Thus A4 is the
coordinate ring of the plane curve Y2 = X, which has a singularity at the
origin. The fact that 4 is not integrally closed is related to the existence of
this singularity.

Example 3. 1f Bis an extension ring of 4, § < A is a multiplicative set, and A
is the integral closure of 4 in B, then the integral closure of A in By is As.
The proof is again easy. It follows from this that if A is an integrally closed
domain, so is Ag.

Theorem 9.2. Let A be an integrally closed domain, K the field of fractions
of A, and L an algebraic extension of K. Then an element a€ L is integral
over A if and only if its minimal polynomial over K has all its coefficients
in A.

Proof. Let f(X)=X"+a, X"~ + - + a, be the minimal polynomial of «
over K. We have f(x) = 0, so that if all the g, are in A then « is integral over
A.Conversely, if a is integral over A4, then letting L be an algebraic closure of
Lwehave asplitting f(X) = (X —a;)...(X —a,) of f(X)in L[ X] into linear
factors; each of the a; is conjugate to o over K, so that there is an
isomorphism K[a] ~ K[a,] fixing the elements of K and taking « into «;,
and therefore the o, are also integral over 4. Then a,,...,a,eA[a,,...,a,),
and hence they are integral over 4; but a;eK and A is integrally closed,
so that finally a,c 4.

Example 4. Let A be a UFD in which 2 is a unit. Let f €A be square-free,
(that is, not divisible by the square of any prime of A). Then A[\/ f1is an
integrally closed domain.

Proof. Letobea square root of f. Let K be the field of fractions of 4; then
A is integrally closed in K by Example 1, so that if 2K we have a4 and
Ala] = 4, and the assertion is trivial. If ¢ K then the field of fractions of
Ala] is K(x)= K + Ko, and every element £eK(x) can be written in a
Pnique way as & = x + ya with x, ye K. The minimal polynomial of & over K
I8 X2 — 2x X + (x2 — y2f), so that using the previous theorem, if ¢ is integral
Over 4 we get 2xeA and x? — y?feA. By assumption, 2xeA implies xeA.
Hence y2fe 4. From this, if some prime p of 4 divides the denominator of y
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we get p?| f, which contradicts the square-free hypothesis. Thus ye 4, and
EeA + Aa = A[a], so that A[«] is integrally closed in K(z). =

Lemma 1. Let B be an integral domain and A < B a subring such that B is
integral over A. Then

A is a field < B is a field.

Proof. (=) If 0 # beB then there is a relation of the form b" +ab" ™' + -
+ a, = 0 with g, 4, and since Bis an integral domain we can assume a,, # 0.
Then
b™l'=—a, 'b" ' +a,b" 2+ +a,_,)eB.
(<) If 0 # aeA then a”'eB, so that there is a relation a "+ c,a """
+ -+ ¢, =0 with ¢;e 4. Then
al=—(c,+cat+t+c,a" Ned. m

Lemma 2. Let A be a ring, and B an extension ring which is integral over 4.
If P is a maximal ideal of B then P~ 4 is a maximal ideal of 4. Conversely if
p is a maximal ideal of 4 then there exists a prime ideal P of B lying over p,
and any such P is a maximal ideal of B.

Proof. For PeSpecB let PnA=p; then the extension A/p < B/P is
integral. Thus by Lemma 1 above, P is maximal if and only if p is maximal.
Next, to prove that there exists P lying over a given maximal ideal p of 4, it
is enough to prove that pBs B. For then any maximal ideal P of B
containing pB will satisfy PnA>p and 1¢Pn A4, so that PnA=p. By
contradiction, assume that pB = B; then there is an expression 1 =3 1 1;b;
with b,e B and m,ep. If we set C = A[b,,...,b,] then C is finite over 4 and
pC = C. Letting C = Au, + - + Au, We get u; = ) n;;u; for some m;;€p, 50
that A = det(d;; — m;;) satisfies Au; =0 for each j, and hence AC =0. But
le(C, so that A=0, and on the other hand A =1 mod p; therefore 1ep,
which is a contradiction. =

Theorem 9.3. Let 4 be a ring, B an extension ring which is integral over
A and p a prime ideal of A.

(i) There exists a prime ideal of B lying over p.

(ii) There are no inclusions between prime ideals of B lying over p.

(i1i) Let A be an integrally closed domain, K its field of fractions, and L a
normal field extension of K in the sense of Galois theory (that is K < L is
algebraic, and for any ac L, all the conjugates of « over K are in L); if Bis the
integral closure of 4 in L then all the prime ideals of B lying over p
are conjugate over K.
Proof. Localising the exact sequence 0— A4 — B at p gives an exact
sequence 0~ A4, — B =B®,4, in which B, is an extension ring
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integral over A,. From the commutative diagram

A,— B,

T T

A ——B
we sec that the prime ideals of Blying over p correspond bijectively with the
maximal ideals of B, lying over the maximal ideal p4, of 4,. Hence, to prove
(i) and (ii) it is enough to consider the case that p is a maximal ideal, which
has already been done in Lemma 2.

Now for (iii). Let P, and P, be prime ideals of B lying over p. First of all
we consider the case [L:K] < o0; let G ={o,,...,q,} be the group of K-
automorphisms of L. If P,#¢;'(P,) for any j then by (ii) we have
P, ¢ 6 1(P,), so that there is an element xeP, not contained in any
o7 Y(Py) for 1 <j<r (see Ex. 1.6). Set y =([];0,(x))%, where g =1 if char
K =0, and q = p* for a sufficiently large integer v if char K = p > 0. Then
yeK, and is integral over 4, so that ye A. However, the identity map of Lis
contained among the g, so that yeP,, and hence yeP,n A =p < P,. This
contradicts ¢ (x)¢ P, for all j. Therefore P, =¢; '(P,) for some j.

If[L:K] = oo we need Galois theory for infinite extensions. Let K’ < Lbe
the fixed subfield of G = Aut (L/K); then L is Galois over K'and K c K'isa
purely inseparable extension. If K’ ## K we must have char K = p > 0, and
setting 4’ for the integral closure of 4 in K’ we see easily that

p’ = {xeA'|x%ep for some q=p’}
is the unique prime ideal of A’ lying over p. Thus replacing K by K’ we can
assume that L is a Galois extension of K. For any finite Galois extension
K = I contained in L we now set

F(L)={oeG|o(P,nL)=P,nL};
then by the case of finite extensions we have just proved, F(L)# (.
Moreover, F(L) < G is closed in the Krull topology. (Recall that the Krull
topology of G is the topology induced by the inclusion of G into the direct
product of finite groups [ [, Aut(L/K); with respect to this topology, G is
compact. For details see textbooks on field theory.) If L] for 1 <i<n are
finite Galois extensions of K contained in L then their composite L’ is
also a finite Galois extension of K, and (F(L;)> F(L') # &, so that the
family {F(L)|L < L is a finite Galois extension of K} of closed subsets
of G has the finite intersection property; since G is compact,
NFL)# . Taking oe( ), F(L) we obviously have ¢(P;)=P,. ®

For a ring 4 and an A-algebra B, the following statement is called the
~ going-up theorem: given two prime ideals p = p’ of A and a prime ideal P of B
lying over p, there exists P’eSpec B such that Pc P’ and PnA=yp.
Similarly, the going-down theorem is the following statement: given p < p’
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and P'eSpec B lying over p', there exists PeSpec B such that P < P’ and
PnA=p

Theorem 9.4. (1) If B> A is an extension ring which is integral over 4 then
the going-up theorem holds.

(ii) If in addition B is an integral domain and A is integrally closed, the

going-down theorem also holds.
Proof. (i) Suppose p < p’ and P are given as above. Since Pn 4 = p, we can
think of B/P as an extension ring of A/p, and it is integral over 4/p because
the condition that an element of B is integral over A4 is preserved by the
homomorphism B — B/P. By (i) of the previous theorem there is a prime
ideal of B/P lying over p'/p, and writing P’ for its inverse image in B we have
P'eSpecBand PnA=yp’

(i) Let K be the field of fractions of A4, and let L be a normal extension
field of K containing B; set C for the integral closure of 4 in L. Suppose
given prime ideals p = p’ of 4 and P'eSpec B such that PPn A4 =yp’, and
choose Q’eSpec C such that Q' B= P’. Choose also a prime ideal Q of C
over p, so that using the going-up theorem we can find a prime ideal Q, of C
containing Q and lying over p’. Both Q, and Q' lie over p’, so that by (iii) of
the previous theorem there is an automorphism geAut(L/K) such that
o(Q,) = Q. Setting 6(Q)=0Q, we have 0, <@, and §,nA=0nA=p,
so that setting P=Q,nB we get PnA=p, PcQ'nB=PF. (For
a different proof of (ii) which does not use Theorem 3, (iii), see [AM], (5.16),
or [Kunz].) =

We now treat another important case in which the going-down theorem
holds.

Theorem 9.5. Let A be aring and B a flat A-algebra; then the going-down
theorem holds between 4 and B.

Proof. Let p < p’ be prime ideals of A, and let P’ be a prime ideal of B lying
over p’; then B, is faithfully flat over A,, so that by Theorem 7.3
Spec(Bp.) — Spec(A,) is surjective. Hence there is a prime ideal ¥
of By lying over pA,, and setting ‘R~ B = P we obviously have Pc F
and PnA=p. W

Theorem 9.6. Let A c B be integral domains such that A isintegrally closed
and B is integral over A4; then the canonical map f:Spec B——Spec A4 is
open. More precisely, for teB, let X" + a; X"~ + - + a, be amonic poly-
nomial with coefficients in 4 having ¢ as a root and of minimal degree; then

n

)= Dla),

i=1
where the notation D( ) is as in §4.
Proof (H. Seydi [4]). By Theorem 2, F(X)=X"4+a, X" '+ +a, I8
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ijrreducible over the field of fractions of A; if we set C = A[t] then
C ~ A[X]/(F(X)), so C is a free A-module with basis 1, ¢, t*,...,t"" ! and
is hence faithfully flat over A. Suppose that PeD(z), so that PeSpec B
with t¢P, and set p=Pn A; then peU,-D(a,.), since otherwise a;ep for
all i, and so t"eP, hence teP, which is a contradiction.

Conversely, given peUiD(ai), suppose that te\/ (pC); then for sufficiently
large m we have 1" =Y"1_ b;t" "' with b,ep. We can take m > n. Then X"
-y b, X" 'is divisible by F(X) in A[X], which implies that X™ is divisible
by F(X)=X"+ ZdiX"_" in (A/p)[X]; since at least one of the d; is non-
zero, this is a contradiction. Thus teé\/(pC), so that there exists QeSpec C
with t¢Q and pC <= Q. Setting A =q we have p < q, so that by the
previous theorem there exists P, eSpec C satisfying P;n 4 =pand P, < Q.
Since B is integral over C there exists PeSpec B lying over P,. We have
PeD(t), since otherwise tePnC =P, c Q, which contradicts t¢Q. This
proves that

f(D@) =) D(ay).
Any open set of Spec B is a union of open sets of the form D(t), and hence
J: SpecB — Spec A4 is open.

Exercises to §9. Prove the following propositions.

9.1. Let A be a ring, A B an integral extension, and p a prime ideal of A.
Suppose that B has just one prime ideal P lying over p; then Bp= B,

9.2. Let A be a ring and 4 < B an integral extension ring. Then dim A4 =
dim B.

9.3. Let A be aring, A = B a finitely generated integral extension of A, and p a
prime ideal of A. Then B has only a finite number of prime ideals lying over
p.

9.4. Let A be an integral domain and K its field of fractions. We say that xeK is
almost integral over A if there exists 0 # ae A such that ax"e A foralln > 0.
If x is integral over A it is almost integral, and if 4 is Noetherian the
converse holds.

9.5. Let AcK be as in the previous question. Say that A is completely
integrally closed if every xe K which is almost integral over A4 belongs to A.
If A is completely integrally closed, so is A[ X .

9.6. Let A be an integrally closed domain, K its field of fractions, and let
J(X)e A[X] be a monic polynomial. Thenif f(X)is reducible in K[ X ]itis
also reducible in A[X].

9.7. Let meZ be square-free, and write A for the integral closure of Z in
Q[/m]. Then A=Z[(1+./my2] if m=1mod4, and A=
Z[/m] otherwise.
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9.8.

9.9.

9.10.

9.11.

Properties of extension rings

Let A be aring and 4 = B an integral extension. If P is a prime ideal of B
with p =P A then ht P <htp.

Let A be a ring and B an A-algebra, and suppose that the going-down
theorem holds between 4 and B. If P is a prime ideal of Bwithp=Pn A4
then ht P > htp.

Let K be a field and L an extension field of K. If P is a prime ideal of
L[X,,...,X,Jand p=PnK[X,,...,X,] then ht P > htp, and equality
holds if L is an algebraic extension of K. Moreover, if two polynomials
f(x), g(x)eK[X,,..., X,] have no common factors in K[X,,...,X,],
they have none in L[ X{,...,X,].

Let A be a Noetherian ringand p,, ..., p, all the minimal prime ideals of 4,
Suppose that A, is an integral domain for all peSpecA. Then (i) Ass 4
={p1r...., 0, ) py Ao p, = nil(A) = 0; (iii) p; + ()20, = Aforall i. It
follows that A ~ A/p, x -+ X A/p,.
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Valuation rings

From Hensel’s theory of p-adic numbers onwards, valuation theory has
been animportant tool of number theory and the theory of function fields in
one variable; the main object of study was however the multiplicative
valuations which generalise the usual notion of absolute value of a number.
In contrast, Krull defined and studied valuation rings from a more ring-
theoretic point of view ([3],1931). His theory was immediately applied to
algebraic geometry by Zariski. In § 10 we treat the elementary parts of their
theory. Discrete valuation rings (DVRs) and Dedekind rings, the classical
objects of study, are treated in the following §11, which also includes the
Krull-Akizuki theorem, so that this section contains the theory of one-
dimensional Noetherian rings. In §12 we treat Krull rings, which should be
thought of as a natural extension of Dedekind rings; we go as far as a recent
theorem of J. Nishimura.

This book is mainly concerned with Noetherian rings, and general
valuation rings and Krull rings are the most important rings outside this
category. The present chapter is intended as complementary to the theory
of Noetherian rings, and we have left out quite a lot on valuation theory.
The reader should consult [B6,7], [ZS] or other textbooks for more
information.

10 General valuations

An integral domain R is a valuation ring if every element x of its
field of fractions K satisfies

x¢R=x"1eR;
{if we write R™! for the set of inverses of non-zero elements of R then this
condition can be expressed as RUR ' = K), We also say that R is a
valuation ring of K. The case R = K is the trivial valuation ring.

If R is a valuation ring then for any two ideals I, J of R either I cJ
Or Jcl must hold; indeed, if xel and x¢J then for any 0#yeJ we
have x/y¢R, so that y/xeR and y = x(y/x)el, therefore J = 1. Thus the
ideals of R form a totally ordered set. In particular, since R has only one

1
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maximal ideal, R is a local ring. We write m for the maximal ideal of R.
Then as one sees easily, K —R={xeK*|x 'em}, where we write
K* for the multiplicative group K — {0}. Thus R is determined by K
and m.

If R is a valuation ring of a field K then any ring R’ with R R' < K is
obviously also a valuation ring, and in fact we have the following stronger
statement.

Theorem 10.1. Let R = R’ = K be as above, let m be the maximal ideal of R
and p that of R’, and suppose that R # R’. Then
) pcmcRcR and p#m.

(i) p is a prime ideal of R and R’ =

(iii) R/p is a valuation ring of the field R'/p.

(iv) Given any valuation ring S of the field R'/p, let S be its inverse image
in R. Then § is a valuation ring having the same field of fractions K as R
Proof. (i)If xepthenx™'¢R’,sox " '¢R and hence xeR; x is not a unit of R,
so that xem. Also, since R # R’ we have p #m.

(i) We know that p R, so that p = pn R, and this is a prime ideal of R.
Since R —p < R’ —p = {units of R’} we have R, < R’, and moreover by
construction, the maximal ideal of R, is contained in the maximal ideal p of
R'. Thus by (i), R, =R".

(ifi) Write ¢:R’ — R'/p for the natural map; then for xeR' —p, if xeR
we have o@(x)eR/p, and if x¢R we have ¢(x)™' =¢@(x !)eR/p, and
therefore R/p is a valuation ring of R'/p.

(iv) Note that p =S and S/p =S, so that if xeR' and x¢S then x is
a unit of R, and ¢(x)¢S. Thus @(x ') = @(x) €S, and hence x 'eS.
If on the other hand xeK — R’ then x !ep c S, so that we have proved
that SUS™!=K. =m

The valuation ring S in (iv) is called the composite of R’ and S. According
to (iii), every valuation ring of K contained in R’ is obtained as the
composite of R" and a valuation ring of R'/p.

Quite generally, we write m for the maximal ideal of a local ring R. If R
and S are local rings with R > S and mz N S = mg we say that R dominates S,
and write R>=S. If R>=S and R # S, we write R > S.

Theorem 10.2. Let K be a field, A = K a subring, and p a prime ideal of 4.
Then there exists a valuation ring R of K satisfying

Ro>A and mzpnA=p.
Proof. Replacing A by A, we can assume that 4 is a local ring with p =1y
Now write & for the set of all subrmgs B of K containing A and such that
1¢pB. Now Ae#, and if ¥ — # is a subset totally ordered by inclusion
then the union of all the elements of & is again an element of %, so that, bY
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Zorn's lemma, Z has an element R which is maximal for inclusion. Since
pR # R thereisa maximal ideal m of R containingpR. Then R = R e #, 50
that R = R,,,and Rislocal. Also p = mand p is a maximal ideal of 4, so that
mn A = p. Thus it only remains to prove that R is a valuation ring of K. If
xeK and x¢R then since R[x]¢# we have lepR[x], and therc
exists a relation of the form
l=ay+a,x+ - +a,x" with aepR.
Since 1 — ag is unit of R we can modify this to get a relation
(*) 1=byx+-+b,x" with bem.
Among all such relations, choose one for which n is as small as possible.

Similarly, if x " '¢R we can find a relation

(**) l=c;x '+ +c,x ™ with ¢em,
and choose one for which m is as small as possible. If n = m we multiply
(**) by b,x" and subtract from (*), and obtain a relation of the form (*)
but with a strictly smaller degree n, which is a contradiction; if # < m then
we get the same contradiction on interchanging the roles of x and x ™',
Thus if x¢ R we must have x 'eR. &

Theorem 10.3. A valuation ring is integrally closed.

Proof. Let Rbea valuationring ofa field K, and let xe K be integral over R,

sothat x"+ a,;x"~! 4 - + a, = O with ;e R. If x¢R then x ™ ! emyg, but then
l+ax '+ +a,x"=0,

and we get 1emy, which is a contradiction. Hence xéR. ™

Theorem 10.4. Let K be a field, 4 = K a subring, and let B be the integral
closure of 4 in K. Then B is the intersection of all the valuation rings of K
containing A.
Proof. Write B' for the intersection of all valuation rings of K containing
A, so that by the previous theorem we have B' > B. To prove the opposite
inclusion it is enough to show that for any element xeK which is not inte-
gral over A there is a valuation ring of K containing A but not x. Set
x"!=y The ideal yA[y] of A[y] does not contain 1:for if 1 =a,y+
Gy + -+ a,y" with g;e A then x would be integral over A, contradicting
the assumption. Therefore there is a maximal ideal p of A[y] containing
YALy], and by Theorem 2 there exists a valuation ring R of K such that
R:>A[y] and mgnA[y] =p. Now y=x"'emy, so that x¢ R. =
LetKbeafieldand A = K a subring. Ifa valuation ring R of K contains 4
We say that R has a centre in 4, and the prime ideal my ~ A4 of A is called the
Centre of R in A. The set of valuation rings of K having a centre in A4 is called
the Zariski space or the Zariski Riemann surface of K over A4, and written
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Zar(K, A). We will treat Zar (K, A) as a topological space, introducing a
topology as follows.
For x,,...,x,eK, set U(x,,...,x,) = Zar (K, A[x,,...,x,]). Then since

U(xla-~~sxn)mU(y17"'9ym): U(xla'”vxn’yls“-’ym)a

the collection & = {U(x,,...,x,)[n >0 and x;6K} is the basis for the
open sets of a topology on Zar{(K, A). That is, we take as open sets the
subsets of Zar (K, A) which can be written as a union of elements of &,
As in the case of Spec, this topology is called the Zariski topology.

Theorem 10.5. Zar (K, A) is quasi~compact.
Proof. Ttisenough to prove thatif .« is a family of closed sets of Zar (K, A4)
having the finite intersection property (that is, the intersection of any finite
number of elements of &/ is non-empty) then the intersection of all the
elements of .«/ is non-empty. By Zorn’s lemma there exists a maximal family
of closed sets .o/" having the finite intersection property and containing .o/,
Since it is then enough to show that the intersection of all the elements of .o¢’
is non-empty, we can take o = o/". Then it is easy to see that =/ has the
following properties:

() Fy,....F.ed =F " NnF,ed;

B Z,,...,Z, are closed sets and Z, vV Z, e/ = Z,c.9/ for some i

(y) if a closed set F contains an eclement of .o/ then Fe.«/.
For a subset F < Zar (K, A) we write F° to denote the complement of F.
If Fes/ and F* = { J,U, then F = (), U5, and moreover if U(x;,..., x,)* =
7=1U(x;)°eo/ then by () above one of the U(x;)° must belong to /.
Hence the intersection of all the elements of .o/ is the same thing as the
intersection of the sets of the form U(x)® belonging to .«/. Set

I'={yeK|U(y e}
Now since the condition for ReZar(K, A) to belong to U(y~ ') is that
yemyp, the intersection of all the elements of &/ is equal to

{ReZar(K, A)jmg =T}
Write I for the ideal of A[T"] generated by I'. If 1 ¢ then by Theorem 2, the
above set is non-empty, as required to prove. But if 1€l then there is 2
finite subset {y,....,y}<T such that 1€Y y,A[y,,....y]; but then
Uia--nU(y 1) =, which contradicts the finite intersection
property of o/. m

When K is an algebraic function field over an algebraically closed ﬁeldlf

of characteristic O (that is, K is a finitely generated extension of k), Zarisk
gave a classification of valuation rings of K containing k, and using this ar}d
the compactness result above, he succeeded in giving an algebraic proof in
characteristic 0 of the resolution of singularities of algebraic varieties of
dimension 2 and 3. However, Hironaka’s general proof of resolution of
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singularities in characteristic 0 in all dimensions was obtained by other
methods, without the use of valuation theory.

As we saw at the beginning of this section, the ideals of R form a totally
ordered set under inclusion. This holds not just for ideals, but for all R-
modules contained in K. In particular, if we set

G={xR[xeK and x#0},

then G is a totally ordered set under inclusion; we will, however, give G the
opposite order to that given by inclusion. That is, we define < by
, xR < yR<xR o yR.
Moreover, G is an Abelian group with product (xR)-(yR) = xyR. In general,
an Abelian group H written additively, together with a total order relation
2 is called an ordered group if the axiom

Xzyzzt=>x+zz2y+!
holds. This axiom implies

1) x>0, y2z0=>x+y>0, and (2) x=2y=>—y=2—x.
We make an ordered set Hu{oo} by adding to H an element oo bigger
than all the elements of H, and fix the conventions oo + o = o for aeH
and oc + oc = oc. A mapu:K—Hu{co} from a field K to Hu{co}
is called an additive valuation or just a valuation of K if it satisfies the
conditions

(D) vlxy) = v(x) + v(y)

@) v(x + )= min{o(x), v() );

" (3) v(x)=0<e>x=0.

If we write K* for the multiplicative group of K then v defines a

@pmomorphism K* — H; the image is a subgroup of H, called the value

groups of v. We also set
wh R,={xeK|v(x)=>0} and m,={xeK|v(x)>0},
 obtaining a valuation ring R, of K with m, as its maximal ideal, and call R,
‘ the valuation ring of v, and m,, the valuation ideal of v. Conversely, if R is a
_\V;‘falhation ring of K, then the group G = {xR|xeK*} described above is an
" ordered group, and we obtain an additive valuation of K with value group
7 by defining v:K — Gu {c0} by v(0) = 0o and v(x) = xR for xe K* (there
18 no real significance in whether or not we rewrite the multiplication in
L6 additively); the valuation ring of v is R. The additive valuation corres-
Ponding to a valuation ring R is not quite unique, but if v and v’ are
i?WO additive valuations of K with value groups H and H' and both having
H1€ valuation ring R then there exists an order-isomorphism @:H — H’
ch that v’ = @u (prove this!). Thus we can think of valuation rings and
ditive valuations as being two aspects of the same thing.
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We now give some examples of ordered groups:

(1) the additive group of real numbers R (this is isomorphic to the
multiplicative group of positive reals), or any subgroup of this;

(2) the group Z of rational integers;

(3) the direct product Z" of n copies of Z, with lexicographical order,
that is

(a a)<(b byes {the first non-zero element of
13-5%n a3 Dy

b,—ay,...,b,—a, is positive.

An ordered group G is said to be Archimedean if it is order-isomorphic to
a suitable subgroup of R. The name is explained by the following theorem:
the condition in it is known as the Archimedean axiom. (Note that our
usage is completely unrelated to that in number theory, where non-
Archimedean fields are p-adic fields, as opposed to subfields of R and C with
the usual ‘Archimedean’ metrics.)

Theorem 10.6. Let G be an ordered group; then G is Archimedean if and
only if the following condition holds:

if a, be G with a > 0, there exists a natural number » such that na > b.
Proof. The condition is obviously necessary, and we prove sufficiency. If
G = {0} then we can certainly embed G in R. Suppose that G # {0}.
Fix some 0 < xeG. For any yegG, there is a well-defined largest integer
n such that nx <y (if y =0 this is clear by assumption; if y <0, let m be
the smallest integer such that — y < mx, and set n = — m). Let this be n,.
Now set y; = y — nox and let n, be the largest integer nsuch that nx < 10y,;
we have 0 <n; < 10. Set y, =10y, —n,x and let n, be the largest integer
n such that nx < 10y,. Continuing in the same way, we find integers g,
ny,n,,..., and set @(y) = a, where « is the real number given by the decimal
expression n, + 0.nyn,n;5. ... Then it can easily be checked that ¢:G — R
is order-preserving, in the sense that y <y’ implies ¢(p) < @()).

We also see that ¢ is injective. For this, we only need to observe that
if y <y then there exists a natural number r such that x < 107(y' — ¥
the details are left to the reader.

Finally we show that ¢ is a group homomorphism. For yeG, we write
n/10" with neZ to denote the number obtained by taking the first 7
decimal places of ¢(y); the numerator n is determined by the property that
nx <107y < (n+ 1)x. For y'eG, if n'x < 10"y < (0 + 1)x then we have

m+nx<10(y+y)<(m+n' + 2x,
and hence
oY+ y)—(n+n)107" <2107,
so that
lp(y +)) — o(y) — o(y) <4.107,
and since r is arbitrary, o(y + y) =) + o). W
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A non-zero group G order-isomorphic to a subgroup of R is said to have
rank 1. The rational rank of an ordered group G of rank 1 is the maximum

aumber of elements of G (viewed as a subgroup of R) which are linearly
mdependent over Z. For example, the additive group G =27 + Z\/ 2cRis
an ordered group of rank 1 and rational rank 2.

Theorem 10.7. Let R be a valuation ring having value group G. Then G has
rank 1< R has Krull dimension 1.
Proof. (=) Since G # 0, R is not a field. Suppose that p is a prime ideal of R
distinct from mg. Let emy be such that £¢p, and set v(&) = x, where vis the
additive valuation corresponding to R. Suppose that 0 ##nep, and set y =
o(n); then ye G and x > 0, so that nx > y for some sufficiently large natural
number n. This means that &"/neR, so that £"en R « p; then since p is prime
we have £ep, which is a contradiction. Therefore p = (0). The only prime
ideals of R are mg and (0), which means dim R = 1.

(<) If 0 # nemy then myg is the unique prime ideal containing #R, and
hence ./ (nR) = mg. Thus for any {emy there exists a natural number n such
that £"enR. From this one sees easily that G satisfies the Archimedean

axiom. N

Exercises to §10. Prove the following propositions.

10.1. In a valuation ring any finitely generated ideal is principal.

10.2. If Risa valuation ring then an R-module M is flat if and only if it is torsion-
free (that is, a # 0, x 20 = ax #0 for aeR, xeM).

10.3. In Theorem 104, if A is a local ring then B is the intersection of the
valuation rings of K dominating A.

10.4. If R is a valuation ring of Krull dimension > 2 then the formal power series
ring R{X ] is not integrally closed ([B5], Ex. 27, p. 76 and Seidenberg [1]).

10.5. If Risa valuation ring of Krull dimension 1 and K its field of fractions then
there do not exist any rings intermediate between R and K. In other words
R is maximal among proper subrings of K. Conversely if a ring R, not a
field, is a maximal proper subring of a field K then R is a valuation ring of
Krull dimension 1.

10.6. If v is an additive valuation of a field K, and if @, feK are such that
v(a) # v(B) then v(x + §) = min (v(a), v(B)).

10.7. If v is an additive valuation of a field K and dq,-...,8,6K are such that
oy +--+a,=0 then there exist two indices i, j such that i#j and
v(oy) = v(a)).

108. Let K< L be algebraic field extension of degree [L:K] =n, and let § be
a valuation ring of L; set R = S~ K. Write k, k' for the residue fields of S
and R, and set [k:k"} = f. Now let G be the value group of S, and let G' be
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the image of K* under the valuation map L* — G; set |G:G’| = e. Then
ef <n. (The numbers f and e are called the degree and the ramification
index of the valuation ring extension S/R.)

10.9. Let L,K,S and R be as in the previous question, and let S; #S be a
valuation ring of Lsuch that §; n K = R. Then neither of § or §, contains
the other.

10.10 Let A be an integral domain with field of fractions K, and let H be an
ordered group. If amap v:A — H u { oo} satisfies conditions (1), (2)and (3)
of an additive valuation (on elements of A), then » can be extended
uniquely to an additive valuation K — Hu {0},

10.11 Let k be a field, X and Y indeterminates, and suppose that « is a positive
irrational number. Then the map v:k[X,Y]— Ru{w} defined by
taking Y ¢, X"Y™ (with c,,ek) into v(}c,,X"Y™)=min{n+
ma|c,,, # 0} determines a valuation of k(X,Y) with value group
Z+ Za.

11 DVRs and Dedekind rings

A valuation ring whose value group is isomorphic to Z is called
a discrete valuation ring (DVR). Discrete refers to the fact that the value
group is a discrete subgroup of R, and has nothing to do with the
m-adic topology of the local ring being discrete.
Theorem 11.1. Let R be a valuation ring. Then the following conditions are
equivalent.

(1) Ris a DVR;

(2) R is a principal ideal domain;

(3) R is Noetherian.

Proof. Let K be the field of fractions of R and m its maximal ideal.

(1) =>(2) Let vy the additive valuation of R having value group Z; this is
called the normalised additive valuation corresponding to R. There exists
tem such that vg(f) = 1. For 0 # xem, the valuation vg(x) is a positive
integer, say vg(x) = n; then vg(x/t") = 0, so that we can write x = t"u withu a
unit of R. In particular m=¢tR. Let I3 (0) be any ideal of R; then
{vg(a)|0 #ael} is a set of non-negative integers, and so has a smallest
element, say n. Ifn = O then [ contains a unit of R, so that/ = R. Ifn > O then
there exists an xe I such that vg(x) = n; then I = xR = t"R. Therefore R is a
principal ideal domain, and moreover every non-zeto ideal of R is a power
of m=1tR,

(2)=-(3) is obvious.

(3)=(2) In general, given any two ideals of a valuation ring, one contains
the other, so that any finitely generated ideal ;R + - + a,R is equal to on¢
of the a,R, and therefore principal. Hence, if R is Noetherian every ideal of R
is principal.
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(2)=(1) We can write m = xR for some x. Now if we set I = |2, x"R
then this is also a principal ideal, so that we can write I = yR. If we set
y=xz, then from yex’R we get zex" ™ 'R, and since this holds for every
v, we have zel, hence we can write z = yu. Since y = xz = xyu, we bave y(1
— xu) =0, but then since xem we must have y =0, and therefore I = (0).
Because of this, for every non-zero element acR, there is a well-defined
integer v > 0 such that aex”R but a¢x** ' R; we then set t(a) = v. It is not
difficult to see that if a, b, ¢, deR — {0} satisfy a/b = c/d then

v(a) — v(h) = v(c) — v(d);

therefore setting v(£) = v{a) — v(b) for £ = a/beK* gives a map v:K* —7Z
which can easily be seen to be an additive valuation of K whose valuation
ring is R. The value group of v is clearly Z, so that Risa DVR. =

If R is a DVR with maximal ideal m then an element teR such that
m = tR is called a uniformising element of R.

Remark. A valuation ring § whose maximal ideal myg is principal does not
have to be a DVR. To obtain a counter-example, let K be a field, and R
a DVR of K; set k = R/mpg, and suppose that R is a DVR of k. Now Iet
§ be the composite of R and R. Let f be a uniformising element of R, and
geS be any element mapping to a uniformising element § of R. Then
Mg =fRcmgc S <R, and mg/mg = gR = §(S/mpg), and so

mg=mg+ gs.
On the other hand g ~!eR, so that for any hemy we have h/gemg = S, and
hence my = g8, so that

mg =g§.
However, my; = fRis not finitely generated as an ideal of S, being generated
by f, fg7%, fg72,.... The value group of § is Z2, with the valuation
v:K* — 72 given by

v(x)=(n,m), where n=uvg(x) and m=uvg(exf "),
where ¢:R — R/mp = k is the natural homomorphism.

The previous theorem gives a characterisation of DVRs among valuation

rings; now we consider characterisations among all rings.

Theorem 11.2. Let R be a ring; then the following conditions are
~ equivalent:

() Ris a DVR;

(2) R is a local principal ideal domain, and not a field;

(3) R is a Noetherian local ring, dim R > 0 and the maximal ideal mg is
Principal;

(4) R is a one-dimensional normal Noetherian local ring.
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Proof. We saw (1)=(2) in the previous theorem; (2)=>(3) is obvious.

{3)=(1) Let xR be the maximal ideal of R. If x were nilpotent then we
would have dim R =0, and hence x* # 0 for all v. By the Krull intersection
theorem (Theorem 8.10, (i)) we have ()32, x*R = (0), so that for 0 # yeR
there is a well-determined v such that yex*R and y¢x"*'R. If y = x"u, then
since u¢ xR it must be a unit. Similarly, for 0 # ze R we have z = x*v, withva
unit. Therefore yz = x""#uv # 0, and so R is an integral domain. Finally,
any element ¢ of the fraction field of R can be written ¢ = x”u, with u a unit of
R and veZ, and it is easy to see that setting v(¢) = v defines an additive
valuation of the field of fractions of R whose valuation ring is R.

(1)=(4) In a DVR the only ideals are (0) and the powers of the maximal
ideal, so that the only prime ideals of R are (0) and mg, and hence
dim R = 1. By the previous theorem R is Noetherian, and it is normal
because it is a valuation ring.

(4)=(3) By assumption R is an integral domain. Write K for the field of
fractions and ni for the maximal ideal of R. Then m # 0, so that by Theorem
8.10, m # m?; choose some xem —m?2. Since dimR =1 the only prime
ideals of R are (0) and m, so that m must be a prime divisor of xR, and there
exists peR such that xR:y =m. Set a = yx~!; then a¢ R, but am = R. Now
wesetm ™! ={beK[pmc=R},sothat Rem~! and R #m™!sinceaem™ .
Consider the ideal m ™ *m of R; since Rcm ™! we have mcm ™ *m. If we
had = nt™ 't then we would get ant = m, and then a would be integral
over R by Theorem 2.1, so that aeR, which is a contradiction. Hence we
must have m~'m = R. Moreover, xm~ ! « R is an ideal, and if xm ™' <m
then we would have xR = xm ™~ 'm ¢ m?, contradicting x¢m?. Therefore
xm~! =R, and hence xR = xm~'m=m, so that m is principal. =

Quite generally, if R is an integral domain and K its fields of fractions, we
say that an R-submodule I of K is a fractional ideal of R if I# 0, and
there exists a non-zero element aeR such that af = R (see Ex. 3.4). As
an R-module we have I ~ al, so that if R is a Noetherian integral domain
then any fractional ideal is finitely generated. For I a fractional ideal we
set 17! = {aeK|al = R}; we say that I is invertible if I™'I = R,

Theorem 11.3. Let R be an integral domain and I a fractional ideal of R.
Then the following conditions are equivalent:

(1) I is invertible;

(2) 1 is a projective R-module;

(3) I is finitely generated, and for every maximal ideal P of R, the
fractional ideal I, = IR, of R, is principal.
Proof. (1)=(2) If I"U =R then there exist a,el and bel ' such that
S ahb,= 1. Thena,,...,a, generate I, since for any xel we have ) (xb)a; =
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x, and xbeR. Let F=Re, 4+ +Re, be the free R-module with basis
ey, €n We define the R-linear map ¢:F — [ by ¢(e;) = a;, so that ¢ is
surjective. Then we defined :1 — F by writing ,;:] — R for the map
¥:(x) = b;x, and setting y/(x) = 3 ;(x)e;. We then have gy (x) = x,so that ¢
splits, and [ is isomorphic to a direct summand of the free module F, and
therefore projective.

(2)=>(1) Every R-linear map from I to R is given by multiplication by
some element of K (prove this!). If we let ¢: F — I be a surjective map from
a free module F = @ Re;, by assumption there exists a splitting y:] — F
such that oy = 1. Write /(x) = Y A(x)e, for xeI; then by what we have said,
each 4; determines a b;e K such that 4,(x) = b,x, and since for each x that
are only finitely many i such that 4,(x} # 0, we have b, = 0 for all but finitely
many i. Letting b, ..., b, be the non-zero ones, we have Z a;b;x = x for all
xel, where a; = ¢(e;). Thus Y 1a;b; = 1. Moreover, since b, = 2,(I) = R we
have b;el !, and therefore I "'/ =R.

(1)=(3) As we have already seen, / is finitely generated. Now if ) a;b, = 1
and P is any prime ideal then at least one of a;b; must be a unit of R,
and I, =a;Rp. Hence I, is a principal fractional ideal.

(3y=(1) If I is finitely generated then (I~!),=(I;)"'. Indeed, the
inclusion < holds for any ideal; for o,if I =a,R + --- 4+ a,R and xe(I,) !
then xa;eR,p, so there exist ¢;eR — P such that xa;c,eR, so that setting
c=c¢,...c, we have (¢cx)a,eR for all i, which gives cxel ™' and xe(I ™ 1),.
From the fact that I, is principal, we get Ip(Ip) "' = Rp. Now if II "' #R
then we can take a maximal ideal P such that II ! P, and then
Ip(Ip)™' = Ip(I™ 1Y), = PR,, which is a contradiction. Thus we must have
II''=R =

Theorem 11.4. Let R be a Noetherian integral domain, and P a non-zero
prime ideal of R. If P is invertible then ht P = 1 and R, is a DVR.

Proof. 1f P is invertible the maximal ideal PR, of R, is principal, and
condition (3) of Theorem 2 is satisfied; thus R, is a DVR, and so dim Rp=1.

Theorem 11.5. Let R be a normal Noetherian domain. Then we have

(i) all the prime divisors of a non-zero principal ideal have height 1;

(ii) R= mhtP= 1Rp.
Proof. (i) Suppose 0 # acR and that P is one of the prime divisors of aR;
then there exists an element heR such that aR:b = P. We set PR, = m, and
then aR,:b=m, so that ba 'em ' and ba™'¢Rp. If ba™'mcm then
by the determinant trick ha~" is integral over R,, which contradicts the
fact that R ,is integrally closed. Thus ba~'m = R, so that m~'m = Rp,and
then by the previous theorem we get htm=htP = 1.

(ii) It is sufficient to prove that for a, beR with a 0, beaR, for every
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height 1 prime PeSpecR implies bcaR. Let Py,...,P, be the prime
divisors of aR, and let aR=q,;N---Nngq, be a primary decomposition of
aR, where q; is a P;-primary ideal for each i. Then since ht P, = 1, we have
beaR, "nR=q, for i=1,...,n, and therefore be()q;=aR. W

Corollary. Let R be a Noetherian domain. The following two conditions
are necessary and sufficient for R to be normal:

(a) for P a height 1 prime ideal, Rp is a DVR;

(b} all the prime divisors of a non-zero principal ideal of R have height 1.
Proof. We have already seen necessity. For sufficiency, note that the proof
of (ii) above shows that (b) implies R = ﬂh,P:IRP. Then by (a) each R,
is normal, so that R is normal. =&

Definition. An integral domain for which every non-zero ideal is invertible
is called a Dedekind ring (sometimes Dedekind domain).

Theorem 11.6. For an integral domain R the following conditions are
equivalent:

(1) R is a Dedekind ring;

(2) R is either a field or a one-dimensional Noetherian normal domain,

(3) every non-zero ideal of R can be written as a product of a finite
number of prime ideals.

Moreover, the factorisation into primes in (3} is unique.

Proof. (1)=(2) Every non-zero ideal is invertible, and therefore finitely
generated, so that R is Noetherian. Let P be a non-zero prime ideal of R;
then by Theorem 4, the local ring R, is a DVR and ht P = 1, and therefore
either R is a field or dim R = 1. Also, by Theorem 4.7 we know that R is the
intersection of the Rp as P runs through all the maximal ideals of R, but
since each R, is a DVR it follows that R is normal.

(2)=(1) If R is a field there is no problem. If R is not a field then for every
maximal ideal P of R the local ring R, is a one-dimensional Noetherian
local ring and is normal, so that by Theorem 2 it is a principal ideal ring.
Thus by Theorem 3, R is a Dedekind ring.

(1)=(3) Let I be a non-zero ideal. If I = R then we can view it as the
product of zero ideals; if I is itself maximal then it is the product of just one
prime ideal. We have already seen that R is Noetherian, so that we can use
descending induction on I, that is assume that I # R and that every ideal
strictly bigger than J is a product of prime ideals. If I # R then there is a
maximal ideal P containing I, and I = IP~ ! < R. If [P~ = then using
P 'P=R we would have I =IP, and by NAK this would lead to a
contradiction. Hence [P~ #1, so that by induction we can write IP™' =
Q,... 9,, with Q,eSpec R. Multiplying both sides by P gives I =Q,... Q,P.

The proof of (3)=-(1) is a little harder, and we break it up into four steps.
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Step 1. Ingeneral, any non-zero principal ideal aR of an integral domain
R is obviously invertible. Moreover, suppose that I and J are non-zero
fractional ideals and B = IJ; then obviously I and J invertible implies B
invertible, but the converse also holds. To see this, from /7*J "'Bc R we
get I7'J "< B, and also from B™'IJ <R we get B~'I<=J ! and
B~1J < I7';now if B is invertible then multiplying the last two inclusions
together we get B™' =B !B 'IJ <17 'J7', and hence B~ =1"'J .
Therefore

R=BB '=1JI"'J ' =(II"YHYJJ™Y,

and we must have I[I7!'=JJ '=R.

Step 2. Let P be a non-zero prime ideal. Let us prove that if I is an ideal
strictly bigger than P then [P = P. For this it is sufficient to show that if
[ =P + aR with a¢P then P = IP. Consider expressions of /? and a’R + P
as product of prime ideals, I?=P,... P, and ¢°R+P=0,... Q,. Then P,
and Q; are prime ideals containing 1, and so are prime ideals strictly bigger
than P. We now set R = R/P, and write ~ to denote the image in R of
elements or ideals of R. Then we have

(*) P,...P,=a*R=Q,...Q,,
and applying Step 1 to the domain R we find that P, and Q, are all invertible,
and are prime ideals of R. We can suppose that P, is a minimal element of
the set {P,,...,P,}. Moreover, at least one of @,,...,Q, is contained
in P,, so that we can assume that J, = P,, and, on the other hand, since
0, is also a prime ideal and P,...P,c(, we must have §, > P, for
some i. Then P;= @, = P,, and by the minimality of P, we have P;=
P, =(,. Multiplying through both sides of (*) by P; ! gives

P,..P.=0Q,...0..
Proceeding in the same way, we see that r = s, and that after reordering the
0, we can assume that P, = 0, fori = 1,..., r. From this we get P, = Q;, and
@’R+ P =(P +aR)? = P2 4 aP + a’R. Thus any element xeP can be
written

x=y+az+a* with yeP? zeP and teR.
Since a¢P we must have teP, and then as required we have
PcP? 4 4P =(P+aR)P.

Step 3. Let beR be a non-zero element; then in the factorisation
bR = Py ...P, every P, is a maximal ideal of R. Indeed, if I is any ideal
;triC;ly greater than P, then IP; = P;, and by Step 1 P; is invertible, so that

Step4. Let Pbe a prime ideal of R, and 0 #aeP. If aR=P,... P, with
P.eSpec R then P must contain one of the P;, but from Step 3 we know that
P, is maximal, so that P = P, We deduce that P is a maximal ideal and is
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invertible. If every non-zero prime ideal is invertible then any non-zero ideal
of R is invertible, since it can be written as a product of primes. This
completes the proof of (3)=(1).

Finally, if (1), (2) and (3) hold, then as we have seen in Step 2 above, the
uniqueness of factorisation into primes is a consequence of the fact that
the prime ideals of R are invertible. =

Theorem 11.7 (the Krull-Akizuki theorem). Let A be a one-dimensional
Noetherian integral domain with field of fractions K, let L be a finite
algebraic extension field of K, and B a ring with Ac B< L; then B is a
Noetherian ring of dimension at most 1, and if J is a non-zero ideal of B then
B/J is an A-module of finite length.

Proof. We follow the method of proof of Akizuki {1] in the linear algebra
formulation of [B5]. First of all we prove the following lemma.

Lemma. Let A and K be as in the theorem, and let M be a torsion-free
A-module (see Ex. 10.2) of rank r < oo. Then for 0 £ ac A we have

{M/aM) <r-l(A/aA).

Remark. The rank of a module M over an integral domain A is the maximal
number of elements of M linearly independent over A; this is equal to the
dimension of the K-vector space M ®,K.

Proof of the lemma. First we assume that M is finitely generated. Choose
elements &, ..., &,eM linearly independent over 4 and set E =) A¢;; then
for any neM there exists te A with t 0 such that tneE. If we set C = M/E
then from the assumption on M we see that C is also finitely generated, so
that tC = 0 for suitable 0 # te A. Applying Theorem 6.4 to C, we can find
C=Cy,>C, > >C,=0, such that C,/C;, ~A/p; with p,eSpecA.
Now tep,, and since A is one-dimensional each p; is maximal, so that
[(Cy=m < 0. If 0 # acA then the exact sequence

E/a"E —M/a"M — C/a"C -0
gives
(*) M/a"M)<UE/a’E)+C) forall n>0.
Now E and M are both torsion-free A-modules, and one sees easily that
a'Mja'*'M ~ M/aM, and similarly for E. Hence (*) can be written
n-{M/aM) < n-KE/aE) + [C) for all n>0, which gives (M/aM) < (E/aE)
Since E ~ A" we have I(E/aE)=r-l(4/aA). This completes the proof in the
case that M is finitely generated. If M is not finitely generated, take a finitely
generated submodule N =A@, + -+ Ad, of M =M/aM. Then choos”
ing an inverse image w; in M for each @,, and setting M, = ZAw,», we get
(3. A®) = (M ,/M, ~naM) < (M, /aM,) <[ AfaA).
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The right-hand side is now independent of N, so that M is in fact finitely
generated, and M) <rl(A/ad).

We return to the proof of the theorem. We can replace L by the field of
fractions of B. Set [L:K]=r; then B is a torsion-free A-module of rank r.
Hence by thelemma, forany 0 # ae A we have [ (B/aB) < co. Now if J # Qs
an ideal of B and 0 # beJ then since b is algebraic over A it satisfies a
relation

Apb™ 4 @ B" 1+t abta,=0 with acA.
B is an integral domain, so that we can assume aq # 0. Then 0 # aqeJ N A
and so

1 {(B/J) < 1 (B/ayB) < x.
Moreover, one sees from [y(J/aoB) <1, (J/ayB) <1 (B/a,B) < oo that J/a,B
is a finite B-module; hence, J itself is a finite B-module, and therefore B is
Noetherian. If P is a non-zero prime ideal of B then B/P is an Artinian
ring and an integral domain, and therefore a field. Thus P is maximal and
dim B= 1.

Corollary. Let A be a one-dimensional Noetherian integral domain, K its
field of fractions, and L a finite algebraic extension field of K; write B for the
integral closure of A in L. Then B is a Dedekind ring, and for any maximal
ideal P of A there are just a finite number of primes of B lying over P.
Proof. By the theorem B is a one-dimensional Noetherian integral domain
and is normal by construction; hence it is a Dedekind ring, It is easy to see
that if we factorise PB as a product PB = Q%... Q% of a finite number of
prime ideals, then Q,,... Q, are all the prime ideals of B lying over P.

Exercises to §11. Prove the following propositions.

11.1. Let A be a DVR, K its field of fractions, and K an algebraic closure of K;
then any valuation ring of K dominating A is a one-dimensional non-
discrete valuation ring

11.2. Let A be a DVR, K its field of fractions, and L a finite extension ﬁeld of K;
then a valuation ring of L dominating 4 is a DVR.

11.3. Let A be a DVR and m its maximal ideal; then the m-adic completion 4 of
A is again a DVR.

114. Let v:K — RuU{ o0} be an Archimedean additive valuation of a field K,
and let ¢ be a real number with 0 < ¢ < 1. For «, e K, set d(x, f) = "=~ #;
then 4 satisfies the axioms for a metric on K (that is d(a, ) > 0,d(«, )
=0wa=p, d(@,pf)=d(f,«) and d(oy)<d(«,p)+d(p,y)), and the to-
pology of K defined by d does not depend on the choice of ¢. Let R be the
valuation ring of v and m its valuation ideal; if R is a DVR then the
topology determined by d restricts to the m-adic topology on R.
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11.5. Any ideal in a Dedekind ring can be generated by at most two elements.
11.6. Let A be the integral closure of Z in Q( \/ 10); then A is a Dedekind ring but
not a principal ideal ring.
11.7. ¥f a Dedekind ring A is semilocal then it is a principal ideal ring.
11.8. A module over a Dedekind ring is flat if and only if it is torsion-free.
11.9. Let A be an integral domain (not necessarily Noetherian). The following
two conditions are equivalent:
(1) Ap is a valuation ring for every maximal ideal P of 4;
(2) an A-module is flat if and only if it is torsion-free. (An integral
domain satisfying these conditions is called a Priifer domain.)

11.10. A finite torsion-free module over a Dedekind ring is projective, and is
isomorphic to a direct sum of ideals.

12 Krull rings

Let A be an integral domain and K its field of fractions. We write

K* for the multiplicative group of K. We say that A4 is a Krull ring if there is
afamily # = {R,},.4 of DVRs of K such that the following two conditions
hold, where we write v, for the normalised additive valuation correspond-
ing to R;:

() A= (:R;;

(2) for every xeK* there are at most a finite number of A€ A such that
vx) #0.

The family # of DVRs s said to be a defining family of A. Since DVRs are
completely integrally closed (see Ex. 9.5), so are Krull rings. If 4 is a Krull
ring then for any subfield K’ = K the intersection A~ K’ is again Krull.

Theorem 12.1. 1If Ais a Krull ring and S = 4 a multiplicative set, then Agis
again Krull. If # = {R,},., is a defining family of 4 then the subfamily
{R;}1er> where I' = {A€A|R; D Ag} is a defining family of Ag.
Proof. Setting m, for the maximal ideal of R, we have
iel=Snm, =

Let 0 # x€( ) r R; there are at most finitely many A€ A such that v;(x) < 0;
let A={J,,...,4,} be the set of these. If AeA then A¢I’, hence we can find
t,em,;NS. Replacing t, by a suitable power, we can assume that v,(t,x) = 0.
We then set ¢ = [[;cats, 50 that for every ZeA we have v,(tx) >0, and
therefore txeA; but on the other hand teS so that xeAg and we have
proved that Ag > (),.rR;. The opposite inclusion is obvious. The finiteness
condition (2} holds for A, so also for the subset I. =

Krull rings defined by a finite number of DVRs have a simple structure.

Lemma I (Nagata). Let K be a field and R,,..., R, valuation rings of K;

.’
1
|



§12 Krull rings 87

set A=(R;. Then for any given aeK there exists a natural number s = 2

SuCh that

(+a++aH' and all+a++a" )"
both belong to A.
Proof. We consider separately each R;. Note first that (1 —a) (1 +a+ -
+a Y =1—a" Ifa¢R, then a~'em,, and any s > 2 will do. If aeR, then
provided that there does not exist ¢ such that 1 —d'em;, any s=2 will do.
If 1 —aem; then any s which is not a multiple of the characteristic of R;/m;
will do. If on the other hand 1 —a¢m, but 1 —d'em; for some ¢ =2, letting
t, be the smallest value of ¢ for which this happens, we see that 1 —a*em,
only for s multiples of ¢,, so that we only have to avoid these. Thus for each i
the bad values of s (if any) are multiples of some number d; > 1, so that
choosing s not divisible by any of these d; we get the result. ®

Theorem 12.2. Let K be a field and Ry,..., R, valuation rings of K such
that R; & R; for i # j; set m; = rad (R,). Then the intersection A = (){_ R is
a semilocal ring, having p,=m;n A for i=1,...,n as its only maximal
ideals; moreover A, = R;. If each R; is a DVR then 4 is a principal ideal
ring.

Proof. The inclusion A, c R; is obvious. For the opposite inclusion, let
aeR;; choosing s > 2 asin the lemma, and settingu=(1 +a+ --- +a°* )7}
we get uc A and aueA. Obviously u is a unit of R;, so that ue4 —p;
and a=(au)lucd,. This proves that A =R, It follows from this
that there are no inclusions among py,...,p,. If I is an ideal of A not
contained in any p; then (by Ex. 1.6) there exists xel not contained in
ULlpi; then x is a unit in each R;, and hence in 4, so that I = A. Thus
Pis..., P, are all the maximal ideals of A.

Ifeach R;is a DVR then we have m; # m?, and hence p; # p{*, (where p'®
denotes p2 A, A). Thus there exists x,ep; such that x,¢p{?, and x;¢p; for
i#j thenp, = x;A.If Iisanyideal of Aand IR; = x!'R,fori=1,...,nthenit
is easy to see that /=x)'... x"4. ®

If a Krull ring 4 is defined by an infinite number of DVRs then the
defining family of DVRs is not necessarily unique, but the following
theorem tells us that among them there is a minimal family.

Theorem 12.3. Let A be a Krull ring, K its field of fractions, and p a height 1
+ Primeideal of 4; thenif # = {R,},., isa family of DVRs of K defining 4, we
must have 4 e . If we set #, = {A,lpeSpec 4 and htp =1} then &, is a
defining family of A. Thus %, is the minimal defining family of DVRs of A.
Proof. By Theorem 1, 4, is a Krull ring defined by the subfamily %, =
{R,IIA‘, R} F;if A, < R, then the elements of 4 —p are units of R,
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so that p>m;nA. If m;n 4 =(0) then R; o K which is a contradiction,
hence m; N A # (0); since htp = I, we must have p = m,; n A. Thus if we fix
some 0 # xep, then v,(x) >0 for all R, ,, and hence &, is a finite set,
Now by the previous theorem and Ex. 10.5, the elements of &, correspond
bijectively with maximal ideals of 4, and # ; has just one element A,. Thus
A%, in other words #,c #.

To prove that & is a defining family of DVRs of A4 it is enough to show
that A > ("),,,_,4,. That is, it is enough to prove the implication

for a, be A with a # 0, beaA, for all A,eF,=>beaA.

As one sees easily, this is equivalent to saying that aA can be written as
the intersection of height 1 primary ideals. The set of Re# such that
aR # R is finite, so we write R,,..., R, for this. If we set

aR;nA=q; and rad(R)nA=p,
then q; is a primary ideal belonging to p, for each i, and a4 =q,...Nq,.
Eliminating redundant terms from this expression, we get an irredundant
expression, say ad =q;N...Nq, It is enough to show that then htp,=1
for 1 <i <r. By contradiction, suppose that htp, > 1. By Theorem 1, 4, is
a Krull ring with defining family #’ = {Re# |A, < R}, but is not itself
a DVR, and hence by Theorem 2, &' is infinite. Thus there exists R'e #’
such that aR’ = R’; we set p’ =rad(R’)n A. We have a¢p’, and 4, =R’
implies that p’ = p,. Now by assumption a4 #q,N""Nq,, and R, is a
DVR, so that (rad(R;))’ =aR; for some v>0, and hence pj<aq.
Therefore there exists an i > 0 such that

aAdbping,nng, and adopittng,neng,.
Hence there exist be A such that b¢aA but bp, < aA. In particular bp’ < a4,
but since a is a unit of R" we have

(b/a)p' c Anrad(R)=p".
Taking 0 # cep’ then for every n > 0 we have (b/a)"cep’ < A4, and since A is
completely integrally closed, b/ac A. This is a contradiction, and it proves
that htp,=1for1<i<r. =

Corollary. Let A be a Krull ring and 2 the set of height 1 prime ideals of A.
For 0 # ae A set v(a) = n; then

ad= m p("v) ,
peP
where p™ denotes the symbolic nth power p"A N A.

Proof. According to the theorem we have aAd= ﬂpeg(aAm A),
but a4, =p™A, so that a4, nA=p". =

Theorem 12.4. (i) A Noetherian normal domain is a Krull ring. .
(i) Let A be an integral domain, K its field of fractions, and L an extenSI.Oﬂ
field of K. If {A;};, is a family of Krull rings contained in L satisfying
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the two conditions (1) A= ()4, and (2) given any 0 #acA we have
aA; = A; for all but finitely many i, then A4 is a Krull ring.

(i) If 4 is a Krull ring then so is A[X] and A[ X ].

Proof. (i) This follows from Theorem 11.5 and the fact that for any non-
zero aeA there are only finitely many height 1 prime ideals containing a4
(because these are the prime divisors of a4).

(ii) is easy, and we leave it to the reader.

(ii)y K[X]isa principal ideal ring and therefore a Krull ring. Moreover,
if we let 2 be the set of height 1 prime ideals of A then for pe?
the ideal p[X] is prime in A[X], and by Theorem 11.2, (3), the local ring
A[X],x71s @ DVR of K(X). (If we write v for the additive valuation of K
corresponding to the valuation ring A, we can extend v to an additive
valuation of K(X) by setting v(F(X)) = min {v(a,)} for a polynomial

F(X)=ay+a, X+ +a,X (with a,eK),
and v(F/G)=uv(F)—v(G) for a rational function F(X)/G(X); then the
valuation ring of v in K(X) is A[X],y;) Now we have K[X]n
A[X],x; = 4,[X] (prove this!), and so

A[X] = K[X]ﬁ( @ A[X]p[X]>;

by (ii) this is a Krull ring.

Now for A[ X |, let {R;},., be a family of DVRs of K defining 4; then
inside K[ X ] we have A[X] =[),R;[X], also by Ex. 9.5, R;[ X] is an
integrally closed Noetherian ring, and is therefore a Krull ring by (i).
However, we cannot use (ii) as it stands, since X is a non-unit of all the rings
R,[X], so we set R,[X][X ']1=B, and note that A[X]=K[X]n
{(1By); now the hypothesis in (ii) is easily verified. Indeed,

oX)=a,X" +a,,, X' +eA[X] with a,#0
is @ non-unit of B, if and only if a, is a non-unit of R;, and there are only
finitely many such /4. Therefore A[X] is a Krull ring. M

Remark 1. Note that the field of fractions of A[X] is in general smaller
than the field of fractions of K[X].

Remark 2. The B , occurring above are Euclidean rings ([B7], §1,Ex. 9).

Theorem 12.5. The notions of Dedekind ring and one-dimensional Krull
ring coincide.

Proof. A Dedekind ring is a normal Noetherian domain, and therefore a

~ Krull ring. Conversely, if A is a one-dimensional Krull ring, let us prove that

- A is Noetherian. Let { be a non-zero ideal of 4, and let 0 # acl. If we can

< Prove that A/aA is Noetherian then I/aA is finitely generated, and thus so is
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I. By the corollary of Theorem 3 we can write a4 = q,~"""ngq,, where
q; are symbolic powers of prime ideals p; and p, # p; if i # j; now since
dim A =1 each p, is maximal and we have

AjaA = Ajq, x - x A/q,

by Theorem 1.3 and Theorem 1.4. But A/g; is a local ring with maximal
ideal p;/q;, and hence A/q; = 4, /;4,; now since each A, isa DVR, A/ad is
Noetherian (in fact even Artinian). Hence A is one-dimensional Noetherian
integral domain, and is normal, and is therefore a Dedekind ring. =

Theorem 12.6. Let A be a Krull ring, K its field of fractions, and write 2
for the set of height 1 prime ideals of A. Suppose given any p,,...p,e2?
and e,,...,e,cZ. Then there exists xeK satisfying

v{x)=¢; for 1<i<gr
and
v,(x)=0 forall pe?—{p,,....p,}.

Here v; and v, stand for the normalised additive valuations of K
corresponding to p; and p.

Proof. If y,eA is chosen so that y,ep, but y,¢p'®PUp,u-uUp, then
vi(y,)=0; for 1 <i<r. Similarly we choose y,,...,y,€4 such that
v{y;) = 0;;. Then we set

r
y= IJI v

let pi,...,p; be all the primes pe? —{p,,...,p,} for which v,(y)<0.
Then choosing for each j=1,...,s an element t;,ep; not belonging to
p Y -Up,, and taking v to be sufficiently large, we see that

X =y(ty... 1)
satisfies the requirements of the theorem. m

Theorem 12.7 (Y. Mori and J. Nishimura). Let 4 and 2 be as in the
previous theorem. If A/p is Noetherian for every pe then A is
Noetherian.

Proof (J. Nishimura). As in the proof of Theorem 5, it is enough to show
that A/p™ is Noetherian for pe and any n>0. If n=1 this hold§ by
hypothesis. For n>1 we proceed as follows. Applying the previous
theorem with r =1 and e = — 1 we can find an element x in the field of
fractions of A such that v,(x)=1 and v,(x) <0 for every other qe?. Se;
B=A[x]. If yep then y/xeA so that yexB, and conversely B< 4, a0
xBcpA,, so that p=xBnA. Moreover, B=A44xB and so

B/xB ~ A/p.
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Now x'B/x'* !B~ B/xB for each i, so that by induction on i we see that
B/x'Bis a Noetherian B-module for each i, and hence a Noetherian ring.
Now we have
x"BAAcx"A,nA=p",

and B/x"B s a finite 4/(x" B A)-module, being generated by the images of
1,X,..0 x""1 so that by the Eakin—Nagata theorem (Theorem 3.7),
A/(x"BnA) is Noetherian ring; therefore its quotient A/p™ is also
Noetherian. B

Remark. If A is a Noetherian integral domain and K its field of fractions,
then the integral closure of 4 in K is a possibly non-Noetherian Krull ring
([N1], (33.10)). This was proved by Y. Mori (1952} in the local case, and
in the general case by M. Nagata (1955). Theorem 12.7 was proved by
Mori [1] in 1955 as a theorem on the integral closure of Noetherian
rings. His proof was correct (in spite of a number of easily rectifiable
inaccuracies), and was an extremely interesting piece of work, but due to
its difficulty, and the fact that it appeared in an inaccessible journal, the
result was practically forgotten. After Marot [1], (1973) applied it
successfully, Mori’s work attracted attention once more, and J. Nishimura
[1], (1975) reformulated the result as above as a theorem on Krull rings
and gave an elegant proof.

More results on Krull rings can be found in [N1], [B7], [F], among
others.

Exercises to §12. Prove the following propositions.

12.1. Let K < L be a finite extension of fields, and R a valuation ring of K. Then
there are a finite number of valuation rings of L. dominating R, and if L is a
normal extension of K then these are all conjugate to one another under
elements of the Galois group Autg(L).

12.2. Let R be a valuation ring of a field K, and let K c L be a (possibly infinite)
algebraic extension; write R for the integral closure of R in L. Then the
localisation of R at a maximal ideal is a valuation ring dominating R, and
conversely every valuation ring of L dominating R is obtained in this way.

12.3. Let A be a Krull ring, K its field of fractions, and K c L a finite extension
field; if B is the integral closure of A in L, then B is also a Krull ring.

12.4. Let A be an integral domain and K its field of fractions. For I a fractional
ideal, write T=(I" ")~ If I = I we say that I is divisorial. If 4 is a Krull
ring, then an ideal of A is divisorial if and only if it can be expressed as the
intersection of a finite number of height 1 primary ideals.
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Dimension theory

The dimension theory of Noetherian rings is probably the greatest of
Krull's many achievements; with his principal ideal theorem
(Theorem 13.5) the theory of Noetherian rings gained in mathematical
profundity. Then the theory of multiplicities was first treated rigorously
and in considerable generality by Chevalley, and was simplified by Samuel’s
definition of multiplicity in terms of the Samuel function.

Here we follow the method of EGA, proving Theorem 13.4 via the
Samuel function, and deducing the principal ideal theorem as a corollary.
The Samuel function is of importance as a measure of singularity in
Hironaka’s resolution of singularities, but in this book we can only cover its
basic properties. In §15 we exploit the notion of systems of parameters to
discuss among other things the dimension of the fibres of a ring
homomorphism and the dimension formula for finitely generated extension
rings.

13 Graded rings, the Hilbert function and the Samuel function

Let G be an Abelian semigroup with identity element 0; (that is, G
is a set with an addition law + satisfying associativity (x + y) +z=x+
(v + z), commutativity x + y = y + x, and such that 0 + x = x). A graded (or
G-graded) ring is a ring R together with a direct sum decomposition of R as
an additive group R = (PR, satislying R,R;c R, ; Similarly, a graded
R-module is an R-module M together with a direct sum decomposition M =
PicM; satisfying RM; = M,., An element xeM is homogeneous if
xeM,; for some ieG, and i is then called the degree of x. A general element
x€M can be written uniquely in the form x = Y ,.¢ x; with x;€ M, and only
finitely many x; #0; x; is called the homogeneous term of x of degree i.

A submodule Nc M is called a homogeneous submodule (or graded
submodule) if it can be generated by homogencous eclements. This
condition is equivalent to either of the following two:

(1) For xeM, if xeN then ecach homogeneous term of x is in N;

QN = ZieG(NnMi)~

(Y™
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For a homogeneous submodule N<M we set N;=M;nN; then
M/N = PiceMi/N; is again a graded R-module.

One sees from the definition that Ry < R is a subring, and that each
graded piece M; of a graded R-module M is an R,-module.

The notion of graded ring is most frequently used when G is the
semigroup {0, 1,2,...} of non-negative integers, which we denote by N. In
this case, we set R =3, _ ¢ R,; then R* is an ideal of R, with R/R* ~R,,

The polynomial ring R = R,[X,,..., X,] over aring R, is usually made
into an N-graded ring by defining the degree of a monomial X' ... X# as
the total degree o, + -+ + «,; however, R has other useful gradings. For
example, R has an N"-grading in which X' --- X} has degree (a4,...,a,);
the value of systematically using this grading can be seen in Goto-
Watanabe [1]. Alternatively, giving each of the X; some suitable weight
d, and letting the monomial X%'...X% have weight Y a,d; defines an
N-grading of R. For example, the ring Ro[ X, Y, ZJ/f), where f =a,X* +
a,Y? + a;Z7 can be graded by giving the images of X, Y, Z the weights
By, oy and af, respectively.

A filtration of a ring A is a descending chain 4 =J, > J, > of ideals
such that J,J,, = J,,,; the associated graded ring gr(A4) is defined as
follows. First of all as a module we set gr,(4)=J,/J,., for n>0, and
gr(4) = @ ,.n8ra(A); then we define the product by

G+ Tus )+ Imi ) =Xy +Jysmsy for xed, and yel,
It is easy to see that gr(A4) becomes a graded ring. The filtration
Jy > J, < .- defines a linear topology on A (see §8), and the completion A of
A in this topology has a filtration J* > J% > ... such that A/J* ~ A/J, for
all n, hence J*/J*, ~J,""!, and
gr(A4) = gr(A).
~ Let Abearing, I an ideal, and let B= (P, ,I"/I"** be the graded ring
~ associated with the filtration 1 > I? > --- of A by powers of I; the various
notations gr,(A4), gr'(4) and G ,(I) are used to denote B in the current
- literature. An element of B,=I"/I""! can be expressed as a linear
‘combination of products of n elements of B, = I/I2, so that B is generated
- over the subring B, = A/I by elements of B,. If = Ax, + - + Ax, and ¢,
denotes the image of x, in B, = I/I? then

B= ng(A) = (A/I)[Cl LR 6r]’
a‘nd B is a quotient of the polynomial ring (A/I)[X,,...,X,] as a graded
ng.

Thetorem 13.1. An N-graded ring R = @), (R, is Noetherian if and only if
o 1s Noetherian and R is finitely generated as a ring over R,,.
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Proof. The ‘if” is obvious, and we prove the ‘only if : suppose that R g
Noetherian. Then since Ry~ R/R*, R, is Noetherian. R* is a homo.
geneous ideal, and is finitely generated, so that we can suppose that it i
generated by homogeneous elements x4, ..., x,. Then it is easy to see that
R=Ry[x,,...,x,]; in fact it is enough to show that R, — Ro[xl,...,xr]
for every n. Now writing d; for the degree of x; we have

(*) anlen—dl+x2Rn—d2+"'+xar—dr'
Indeed, for yeR,, write y=) x,f; with f;eR; then setting g, for the
homogeneous term of degree n — d; of f; (with g; =0 if n — d, < 0), we also
have y =Y x,g;. From (*) it follows by induction that R, = Ry[x,,...,x,].

Let R=(P),.,R, be a Noetherian graded ring; then if M =@, _ M,
is a finitely gencrated graded R-module, each M, is finitely generated
as Ry-module. In fact when M = R this is clear from (*) above. In the general
case M can be generated by a finite number of homogeneous elements w;: M
= Rw, + - + Rw,. Now letting ¢, be the degree of w;, we have as above that

M,=R,_, 0+ +R,_, 0, (where R;=0 for i<0),

and hence M, is a finite Ry-module. In particular if R is an Artinian ring,
then [(M,) < oo, where | denotes the length of an R,-module. In this case we
define the Hilbert series P(M,t) of M by the formula:

2]

PM,0)= Y (MyeZ[d].

n=0
[In combinatorics it is a standard procedure to associate with a sequence of
numbers ag, a;, a,,... the generating function Y a;t']

Theorem 13.2. Let R=(P),,,R, be a Noetherian graded ring with Ro
Artinian, and let M be a finitely generated graded R-module. Suppose that
R =Ry[x;,...,x,] with x; of degree d;, and that P(M, t) is as above. Then
P(M, 1) is a rational function of ¢, and can be written

P, 0= SO/ (1= %),

where f(t) is a polynomial with coefficients in Z.

Proof. By induction on r, the number of generators of R. When r =9
have R = R,, so that for n sufficiently large, M, = 0, and the power series
P(M, 1) is a polynomial. When r > 0, multiplication by x, defines an Ry
linear map M, — M, , , ; writing K, and L, , 4, for the kernel and cokernel,
we get an exact sequence

0, we

0K, —M, M, ; — Ly, —0.

Set K = @K, and L = @ L,. Then K is a submodule of M, and L = M/xrtM’
so that K and L are finite R-modules; moreover x,K = x,L =050 tha

o T S Al e e i s e
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and L can be viewed as R/x,R-modules, and hence we can apply the
induction hypothesis to P(K,t) and P(L,t). Now from the above exact
sequence we get
UK ) — (M) + 1My ) — ULyt 4,) =0.
If we multiply this by ¢"** and sum over n this gives
tP(K,t) — t*P(M, t) + P(M,t) — P(L,t) = g(t),
where g(t)eZ[t]. The theorem follows at once from this. m
A lot of information on the values of {M,) can be obtained from the
above theorem. Especially simple is the case d; =-- =d, =1, so that R is
generated over R by clements of degree 1. In this case P(M,t)= f(t)
(-0 if f()bas (1 —t)asa factor we can cancel to get P in the form
PM,t)=f((1 — 1)~ with feZ[t], d>0,
and if d>0 then f(1)#0.
If this holds, we will write d =d(M). Since (1 — 1) ' =14+t +12+---» we
can repeatedly differentiate both sides to get
4 2 fd+n—1Y
1—0 _n;)< do1 )t.
(This can of course be proved in other ways, for example by induction on d.)
If f(t)=a,+ a,t+ -+ a,t° then

d+n—1 d+n—-2 d+n—s—1
* — .
*) l(M,,)—a0< d_1 >+a1< i1 >+ +as< d—1 )

here we set ( " >= 0 for m < d — 1. The right-hand side of (*) can be

d—1
formally rearranged as a polynomial in n with rational coefficients, say ¢(n);
then
Q)

<p(X)=(d_ D1

X?"! 4+ (terms of lower degree).

. m
Since (d 1> coincides with the polynomial m(m —1)...(m —d + 2)/

@d— 1) form 2 0, this implies the following result.

Corollary. 1f di=-=d,=1 in Theorem 2, and d = d(M) is defined as
above, then there is a polynomial ¢,(X) of degree d — 1 with rational
Coefficients such that for n > s + 1 — d we have I(M,) = ¢ ,,(n). Here s is the
degree of the polynomial (1 — ¢)*P(M, 1).

The polynomial ¢ u appearing here is called the Hilbert polynomial of the
8raded module M. The numerical function I(M,) itself is called the Hilbert
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Junction of M; by the degree of a Hilbert function we mean the degree of the
corresponding Hilbert polynomial.

Remark. For generald,,...,d,,itisnolonger necessarily the case that (M)
can be represented by one polynomial.

Example 1. When R=R[X,,X,,...,X,], the number of monomials of
. +7r
degree n is (n >, so that
r

IR) = 1<R0)~< " r)

holds for every n>0, and the right-hand side is @g(n). Thus @g(X)=
R)/MUX + N X +r—=1)-- (X +1).

Example 2. Let k be a field, and F(X,,...,X,) a homogeneous poly-
nomial of degree s; set R =k[X,,..., X,]J/(F(X)). Then for n>s,

I(R’l)z(n+r>_<n—s+r>,
r r
and hence, setting <n ;L r> =(1/rn" +a,n"~ 1+, we have
1 -
Pr(X) = [X"— (X -] +a X = (X =T ]+

X"+ (terms of lower degree).

_ S
T (r—1)
Example 3. Let k be a field, and R=k[X,,...,X /P =k[&,,....&),
where P is a homogeneous prime ideal. Let ¢ be the transcendence degree
of R over k, and suppose that &,,...,¢, are algebraically independent
n+t—1
t—1
&,...,¢&, and these are linearly independent over k, so that

l(R,,)><n+t_1

over k; then there are ( monomials of degree n in the

t—1
later {Theorem 8) that d = ¢.

A homogeneous ideal of the polynomial ring k[ X,,..., X,] over a field
k defines an algebraic variety in r-dimensional projective space P, and
the Hilbert polynomial plays an important role in algebraic geometry.
Forexample, note that the numerator of the leading term of ¢ i Example
2 is equal to the degree of F. This holds in more generality, but we must
leave details of this to textbooks on algebraic geometry [Ha].

The idea of using the construction of gr, (A4) to relate the study of a

), from which it follows that d > ¢. In fact we will prove
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general Noetherian local ring (4, m) to the theory of ideals in a polynomial
ring over a field was one of the crucial ideas introduced by Krull in his
article ‘Dimension theory of local rings’ (6], a work of monumental
significance for the theory of Noctherian rings. If m is generated by r
elements then gr, (A)isof theform k[ X ,,..., X, J/I, where k = A/mand I isa
homogeneous ideal. However, the Hilbert function of this graded ring was
first used in the study of the multiplicity of A by P. Samuel (1951).

Samuel functions

In a little more generality, let A be a Noetherian semilocal ring, and m
the Jacobson radical of A. If I is an ideal of A such that for some v >0
we have m" < I «m, we call I an ideal of definition; the I-adic and m-adic
topologies then coincide, so that ‘ideal of definition’ means ‘ideal defining
the m-adic topology’. Let M be a finite A-module. If we set

gr (M) =@ I"'M/I"* ' M
nz0

then gr, (M) is in a natural way a graded module over gr,(4)= @ I["/I"* 1,
For brevity write gr;(A) = A" and gr,(M)= M'. Then the ring Ay = A/l is
Artinian, and if 1=3"x;4, and ¢, is the image of x; in I/I% then
A =Ay[&,..., 5] Halso M =5 Aw; then M’ =Y A'®; (where @; is the
image of w; in M, = M/IM), so that we can apply Theorem 2 and its
corollary to M’. Noting that [(M) = I(I"M/I"** M) (where on the left-hand
side lis the length as an Aj,-module, on the right-hand side as an A-module),
we have

S (M) = (M/I" ' M),

i=0
We now set yi(n) = I(M/I"*'M). In particular we abbreviate i (n) to
Xu(n), and call it the Samuel function of the A-module M.

—1 -
Repeatedly using the well-known formula <m> = <m ) + (m 1)
n

n—1 n
zo(d+v—1 d+n
L(05)-(7)

. 80 that from formula (*) on p. 95 we get

d+n d+n—1 d+n—s
Jdu(n)=ao< d>+a1< i >+~--+as< p )

'?Vith a;€Z. When n > s this is a polynomial in n of degree d. This degree d
: 18 determined by M, and does not depend on I; to see this, if I and J are
both ideals of definition of A then there exist natural numbers g and b

we get
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such that I J, J* < I, so that

an+a—1)= () and gdbn+b—1)> yh(n)
We thus write d = d(M). Itis natural to think of d(M) as a measure of the size
of M.

Theorem 13.3. Let A be a semilocal Noetherian ring, and 0 - M’ —
M — M" -0 an exact sequence of finite A-modules; then

d(M)=max(d(M'), dM")
If [ is any ideal of definition of 4, then i, — xi, and x4, have the same
leading coefficient.
Proof. We can assume M" = M/M'. Then since M"/I"M" = M/(M' + I"M)
we have

M/ I'M)=IM/M + I"'M)+ (M’ + I"M/I"M)

=IM"/I"M")+ {M'/M' nI"M).

Thus setting o(n) = I(M'/M'~I"*'M), we have xl, =yl +o. Since
moreover both .. and ¢ take on only positive values, d(M) coincides with
whichever is the greater of d(M"”) and deg ¢. However, by the Artin—Rees
lemma, there is a ¢ > 0 such that

n>c=>I""McMnI""'Mc " TIM,
and hence

2 () = () > iy (n — );
therefore ¢ and y}, have the same leading coefficient. m

We now define a further measure 6(M) of the size of M: let 5(M) be the
smallest value of # such that there exist x,,...,x,em for which {M/x, M +
<+ x,M) < oo. When (M) < oo we interpret this as 6(M)=0. If I is any
ideal of definition of A4 then (M/IM) < cc, so that §(M)< number of
generators of /. Conversely, in the case that 4 is a local ring and M = 4,
then {(A/I} < cc implies that [ is an m-primary ideal. Therefore in this case
3(A) is the minimum of the number of generators of m-primary ideals.
We have now arrived at the fundamental theorem of dimension theory.

Theorem 13.4. Let A be a semilocal Noetherian ring and M a finite
A-module; then we have

dim M = d(M) = 6(M).
Proof.

Step 1. Each of d(M) and §(M) are finite, but the finiteness of dim M
has not yet been established. First of ali, let us prove that d(4) > dim 4
for the case M = A, by induction on d(A). Set m = rad (A). If d(4) = 0 then
I(A/m") is constant for n> 0, so that for some n we have m"=m""! and
by NAK, m" = 0. Hence any prime ideal of 4 is maximal and dim 4 = 0.
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Next suppose that d(A4) > 0; if dim A = 0 then we're done. If dim 4 > 0,
consider a strictly increasing sequence p, = p, = = p, of prime ideals
of A, choose some element xep, — p, and set B= A/(p, + xA); then by
the previous theorem applied to the exact sequence

0— Afpo — A/po — B—0,

we have d(B) < d(A), and so by induction
dimB<dB)<d(A)—1.
(The values of d(B) and dim B are independent of whether we consider B as

an A-module or as a B-module, as is clear from the definitions.) In B, the
image of p, < < p, provides a chain of prime ideals of length ¢ — 1, so that
e—1<dimB<d(A)—1;
hence e < d(A). Since this holds for any chain of prime ideals of A, this
proves dim A < d(A). For general M, by Theorem 6.4, there are submodules
M;such that 0=M,c M, < c M, =M with
M/M;_,~A/p; and p;eSpecA.
Since for an exact sequence 0—-M — M —M"->0 of finite A-
modules we have
Supp (M) = Supp (M') U Supp (M")
and
dim M = max (dim M’, dim M"),
it is easy to see that
d(M) = max {d(A/p;)} > max {dim(A4/p;)} = dim M.
Step 2. We show that (M) = d(M). If 5(M) = Othen (M) < o0 so that y,(n)
is bounded, hence d(M)=0. Next suppose that 6(M)=s>0, choose

Xq,....%€m such that (M/x, M + -+ x,M) < o0, and set M;=M/x M +
'+ x;M; then clearly 6(M;) = (M) —i. On the other hand,

Il

(M, M) = [(M/x, M + m"M)
(

M/'M) — l(x, M/x, M nm"M)

=(M/m"M)—I(M/(m"M:x,))
= (M/m"M) — [(M/m" "' M),

sothatd(M,) > d(M) — 1. Repeating this, we get d(M,) > d(M) — s, but since
d(M) =0 we have d(M,) =0, so that s > d(M).

Step 3. We show that dim M > 6(M), by induction on dim M. If dim M =0
then Supp (M) = m-Spec A = V(m) so that for large enough n we have
m"<ann M, and (M) < o, therefore 8(M)=0. Next suppose that
dim M > 0, and let p, for 1 <i <t be the minimal prime divisors of ann (M)

[
l
I
l
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with coht p; = dim M; then the p, are not maximal ideals, so do not contain
m. Hence we can choose x;em not contained in any p,. Setting
M, = M/x;M we get dim M, < dim M. Therefore by the inductive hypo-
thesis 6(M ) < dim M ; but obviously o(M) < d(M,) + 1, so that o(M) <
dmM, +1<dimM. =

Theorem 13.5. Let A be a Noetherian ring, and I =(a,,...,q,) an idea]
generated by r clements; then if p is a minimal prime divisor of I we have
htp < r. Hence the height of a proper ideal of A is always finite.

Proof. The ideal 1A, < A, is a primary ideal belonging to the maximal
ideal, so that htp=dim A4, =4(4,)<r. ®

Remark. Krull proved this theorem by induction on r; the case r=1 is
then the hardest part of the proof. Krull called the r = 1 case the principal
ideal theorem (Hauptidealsatz), and the whole of Theorem 5 is sometimes
known by this name. Here Theorem 5 is merely a corollary of Theorem 4,
but one can also deduce the statement dim M = §(M) of Theorem 4 from
it. As far as proving Theorem 5 is concerned, Krull’s proof, which does
not use the Samuel function, is easier. For this proof, see [N1] or [K].
More elementary proofs of the principal ideal theorem can be found in
Rees [3] and Caruth [1].

The definition of height is abstract, and even when one can find a lower
bound, one cannot expect an upper bound just from the definition, so
that this theorem is extremely important. The principal ideal theorem
corresponds to the familiar and obvious-looking proposition of geo-
metrical and physical intuition (which is strictly speaking not always true)
that ‘adding one equation can decrease the dimension of the space of
solutions by at most one’.

Theorem 13.6. Let P be a prime ideal of height r in a Noetherian ring A.
Then

(i) P is a minimal prime divisor of some ideal (a,,...,a,) generated by
r elements;

(ii) if by,...,b,e P we have ht P/(b,,...,b)=r—s3s;

(iti) if a,,...,a, are as in (i) we have

htP/ay,...,a)=r—i for 1<i<r.
Proof. (i) Ap is an r-dimensional local ring, so that by Theorem 4 we can
choose r elements a,,...,a,e PAp such that (a,,...,a,)Ap is PAp-primary.
Each g, is of the form an element of P times a unit of Ap, so that without
loss of generality we can assume that a;eP. Then P is a minimal prime
divisor of (a4,...,q,)A.
(i) Set A= A/(b,,...,b), P=P/b,,...,b) and ht P=r. Then by (i
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there exist ¢,...,c,eP such that P is a minimal prime divisor of
(51,_-,,5,)1 Then P is a minimal prime divisor of (b,,...,b;, ¢y,...,C),
and hence r < s+t by Theorem 5.

(iii) The ideal P/(a,,...,a;) is a minimal prime divisor of (a,,,,...,qa,)
in Af(@y,...,a;), hence ht Pf(a,,...,a) <r —i. The opposite inequality was
proved in (i) m
Theorem 13.7. Let A =P, ,A, be a Noetherian graded ring.

(i) If I is a homogeneous ideal and P is a prime divisor of / then P is also
homogeneous.

(ii) If P is a homogeneous prime ideal of height r then there exists a
sequence P =Py > P, o> P, of length r consisting of homogeneous
prime ideals.

Proof. (i) P can be expressed in the form P = ann (x) for a suitable element
x of the graded A-module A/I. Let aeP, and let x=xy+ x, + " +x,
and a=a,+a,. + -+ a, be decompositions into homogeneous terms.
Then since ax =0,

axo=0, a,x;+a,,,x0=0, a,x;+a,, X1 +0,,,X=0,...,

from which we get azx, =0, ajx, =0,..., and finally a,* ' x = 0. It follows
that a,*'eP, but since P is prime, a,eP. Thus a,, + - +a,eP, so
that in turn a,,, ;€ P. Proceeding in the same way, we see that all the homo-
geneous terms of a are in P, so that P is a homogeneous ideal.

(ii) First of all note that we can assume that A is an integral domain.
To see this, if we take a chain P =p, > > p, of prime ideals of length
r then p, is a minimal prime divisor of (0), and so by (i) is a homogeneous
ideal; so we can replace 4 by 4/p,. Now choose a homogeneous element
03 b, e P, then by Theorem 6, ht (P/b, A)=r — 1, and so there is a minimal
. -prime divisor Q of b, A such that ht(P/Q)=r—1; since Q #(0), it is a
~ height 1 homogeneous prime ideal. By the inductive hypothesis on r
applied to P/Q there exists a chain P = Py > P, >+ > P,_; = of homo-
-geneous prime ideals of length r — 1, and adding on (0) we get a chain
- oflengthr. m
. Let us investigate more closely the relation between local rings and
graded rings.

Theorem 13.8. Let k be a field, and R=k[¢,,...,¢] a graded ring
generated by elements¢,,..., ¢, of degree 1; set M =) ¢R,A=R, and
m=MA.

() Let y be the Samuel function of the local ring A4, and ¢ the Hilbert
function of the graded ring R; then g(n) = y(n) — y(n — 1);

(i) dimR=ht M=dim A =dego + 1;

(iti) gr, (A) ~ R as graded rings.
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Proof. M is a maximal ideal of R so that

mn/mn+1 2M"/M"+1 ZR,,;
hence y(n) — y(n — 1) = (m"/m"* )= kR,) = ¢(n), and so dim A =degy =1+
deg @. Then since A = Ry, we have dim A = ht M. After this it is enough
to prove that dim R =ht M. First of all, assume that R is an integral
domain, so that by Example 3 in the section on Hilbert functions and by
Theorem 5.6, we have

1 +dego > tr.deg, R=dim R 2 ht M;
putting this together with ht M =dim A = 1 + deg ¢, we get dim R =ht M.
Next for general R, let Py, ..., P, be the minimal prime ideals of R; then by
Theorem 7, these are all homogeneous ideals, and each R/P; is a graded
ring. Choosing P, such that dim R = dim R/P, and using the above result,
we get

dim R = dim R/P, = ht M/P, <ht M <dimR,
so that dim R = htM as required. We have R, = M" < m” with m"/m"* ' ~
R,, and so taking an element x of R, into its image in m"/m"**! we obtain
a canonical one-to-one map R =5 gr, A, and it is clear from the definition
that this is a ring isomorphism. ™

n

Theorem 13.9. Let (4, m, k) be a Noetherian local ring, and set G = gr_A4;
then dim 4 =dim G.
Proof. Letting ¢ be the Hilbert polynomial of G, we have dimA =
1 + deg¢ (by Theorem 4), and by the previous theorem this is equal to
dimG. ®

In fact the following more general theorem holds: for I a proper ideal in a
Noetherian local ring A, set G = gr{(A); then dim A =dim G. This will be
proved a little later (Theorem 15.7).

Exercises to §13. Prove the following propositions.

13.1. LetR =R, + R, + - be agraded ring, and u a unit of R,. Then the map T,
defined by T,(xq + Xy + "+ X,) = Xo + X, 4+ + x,u" (where x,eR;) is
an automorphism of R. If R, contains an infinite field k, then an ideal I of R
is homogeneous if and only if T,(I) =1 for every ack.

13.2. Let R=R,+ R, + be a graded ring, I an ideal of R and ¢ an
indeterminate over R. Set R’ = R[t,t 1] and consider R’ as a graded ring
where ¢ has degree 0 (that is, R, = R,[t,t71]). Then an ideal I of R is
homogeneous if and only if T{(IR)= IR’

13.3. Let A be a Noetherian ring having an embedded associated prime. If ae 4
is a non-zero divisor satisfying (1), a"4 =(0), then 4/(a) also has an
embedded associated prime.

13.4. Let R=(P,., R, be a Z-graded ring. For an ideal ] of R, let I* denote the
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greatest homogeneous ideal of R contained in I, that is the ideal of R
generated by all the homogeneous elements of 1.

(i) If P is prime so is P*.

(i1) If P is a homogeneous prime ideal and Q is a P-primary ideal then Q*
is again P-primary.

13.5. Let R be a Z-graded integral domain; write S for the multiplicative set
consisting of all non-zero homogeneous elements of R. Then Ry is a graded
ring, and its component of degree 0 is a field (Rg), = K; if R # R, then Ry
~ K[ X, X '], where the degree of X is the greatest common divisor of the
degrees of elements of S.

13.6. Let R be a Z-graded ring and P an inhomogeneous prime ideal of R; then
there are no prime ideals contained between P* and P. If ht P < oo then
ht P = ht P* + 1 (Matijevic—Roberts [1]).

Appendix to §13. Determinantal ideals (after Eagon—-Northcott [1])

Let M =(a;) be anr x s matrix (r < s) with elements g;;in a Noetherian ring
A, and let I, be the ideal of A generated by the r x t minors (that is
subdeterminants) of M. When t=r and A is a polynomial ring
k[X,,...,X,] overafield k, Macaulay proved that all the prime divisors of
I, bave height <s—r+1 ([Mac], p. 54). In his Ph.D. thesis, Eagon
generalised this result as follows: for an arbitrary Noetherian ring A, every
minimal prime divisor of I, has height < (r — ¢ + 1)(s — t 4 1). The following
ingeneous proof is taken from Eagon—Northcott [1]. We begin with some
preliminary observations.

" The following operations on a matrix M with elements in a ring A are
called elementary row operations: (1) permutation of the rows; (2) replacing
CibyuC; + vC;, where C;and C i # j) are two distinct rows of M, u is a unit
of A and v is an element of A4; elementary column operations are defined
similarly. The ideal I, does not change under these operations. Now, if an
element of M is a unit in A, we can transform M by a finite number of
elementary row and column operations to the following form:

1 0 .. 0

0
N

0
; nd [ is equal to the ideal of 4 generated by the (t — 1) x (¢ — 1) minors of N.
o Lemma. Let (4, P) be a Noetherian local ring and set B= A[X]. Let J be a

;‘Primary ideal of A and J' an ideal of B such that J'< PB and
J+XB=JB + XB. Then PB is a minimal prime divisor of J'.
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Proof. PB + X B is a maximal ideal of B, and is the radical of JB+ XB =
J + XB. Thus, in the ring B/J’ we have that (PB4 XB)/J' is a minima]
prime divisor of the principal ideal (J' 4+ XB)/J'. Hence ht((PB + X B)/
J)y=1. Since PB/J' is a prime ideal in B/J', we have ht(PB/J)=0. m

Theorem 13.10 (Eagon). Let A be a Noetherian ring and M be an r x s
matrix (r < s) of elements of A. Let I, be the ideal of A generated by thet x ¢
minors of M. If P is a minimal prime divisor of I, then we have
htP<(r—t+ 1)(s—t+1)

Proof. Induction on r. When r=1 we have t=1, and so (r —t + 1){s — t +
1) =s. The ideal I, is generated by s elements, so that the assertion is just
the principal ideal theorem (Theorem 5) in this case. Next assume that r > 1,
Localising at P we may assume that A is a local ring with maximal ideal P,
and that I, is P-primary.

If t = 1, then [, is generated by rselementsand (r —t + 1) (s — t + 1) =rs,
so our assertion holds also for this case. Therefore we assume t > 1. If at
least one of the elements of M is a unit of 4, then by what we said above, I, is
generated by (¢ — 1) x (¢ — 1) minors of a (r — 1) x (s — 1) matrix, and again
we are done. Therefore we assume that all the elements of M are in P. Now
comes the brilliant idea. Let M’ be the matrix with elements in B= A[X]
obtained from M by replacing a,, by a,; + X, and let I' be the ideal of B
generated by the ¢ x t minors of M. Since ¢ > 1 and g;;€ P for all i and j we
have I' = PB. We also have I' + XB = I,B + X B since both sides have the
same image in B/X B = A. Therefore PB is a minimal prime divisor of I' by
the lemma. Since the element a;, + X of M’ is not in PB, we have
ht PB < (r —t + 1)(s — t + 1) by our previous argument. Since ht PB = ht P,
as we can see by Theorems 4 and 5, we are done. o

14 Systems of parameters and multiplicity

Let (A4, m) be an r-dimensional Noetherian local ring; by Theorem
13.4, there exists an m-primary ideal generated by r elements, but none
generated by fewer. If a,,...,a,em generate an wm-primary ideal,
{ay,...,a} is said to be a system of parameters of A (sometimes
abbreviated to s.0.p.). If M is a finite A-module with dim M = s, there exist
Vis--.,¥s€m such that {M/(y,,...,y)M) < oo, and then {y,,...,y,} is
said to be a system of parameters of M.

If we set A/m =k, the smallest number of elements needed to generate
m itself is equal to rank,m/m?; (here rank, is the rank of a free module
over k, that is the dimension of m/m? as k-vector space). This number is
called the embedding dimension of A, and is written emb dim A. In general

dim A <embdim 4,
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and equality holds when m can be generated by r elements; in this case
A is said to be a regular local ring, and a system of parameters generating
m is called a regular system of parameters.

Theorem 14.1. Let(4, m) bea Noetherian local ring, and x,, ..., x,a system
of parameters. Then

(i) dim A/(xy,...,x)=r—i for I<i<r

(ii) although it is not true that ht(x,,...,x;) =i for all i for an arbitrary

system of parameters, there exists a choice of x,,...,x, such that every
subset F<{x,,...,x,} generates an ideal of A of height equal to the
pumber of elements of F.
Proof. (i) is contained in Theorem 13.6. We now prove the second half of
@ii). If <1 the assertion is obvious; suppose that r>1. Let py; (for 1<
j<eo) be the prime ideals of 4 of height 0. Choosing x;em not contained
in any po;, we have ht(x,) = 1. Next letting p; (for 1 <j <e,) be the minimal
prime divisors of (x,), so that ht p,; = 1, and choosing x,em not contained
in any py; or any p,;, we have ht(x,)=1, ht(x;,x,)=2; if r =2 we’re
done. If r>2 we choose x;em not contained in any minimal prime
divisor of (0), (x,), (x,), (x;,x,), and proceed in the same way to obtain
the result.

We now give an example where ht(x,,...,x;) <i. Let k be a ficld and
set R=k[X,Y,Z]; let I =(X)(Y,Z), and write A= R/I, and x, y, z for
the images in A of X, Y, Z. The minimal prime ideals of 4 are (x) and
(,2); now A/(x)~ R/(X)~k[Y,Z] is two-dimensional and A4/(y,z)=~
RAY,Z)~k[X] is one-dimensional, so that dim 4 = 2. {px+z} is a
system of parameters of A; in fact xy=xz =0 so that x*=x(x + z)e
0nx+2) and z%=z(x + z)e(y,x + z). However, y is contained in the
minimal prime ideal (y,z) of A4, and hence ht(y)=0. ®

Theorem 14.2. Let (R,m) be an n-dimensional regular local ring, and
X15...,x; elements of m. Then the following conditions are equivalent:
(1) x4,...,x; is a subset of a regular system of parameters of R;

(2) the images in m/m? of x,,..., x; are linearly independent over R/m;

() R/(xy,...,x;) is an (n — i)-dimensional regular local ring,
Proof. (1)=(2) Ixy,..., X, Xi4 1. .., X, 18 @ regular system of parameters then
their images generate m/m? over k = R/m, and since rank, m/m? = n they
must be linearly independent over k.

()=(3) We know that dim R/xy,...,x)=n—1i, and the images of
Xi+1,...,X, generate the maximal ideal of R/(x,,..., x,).

(3)=(1) If the maximal ideal m/(x,,...,x;) of R/(x,,...,x,) is generated
; by the images of y;,...,y,-;em then m is generated by x,,...,x,,

yl"",yn—r
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Remark. The hypothesis that R is regular is not needed for (3)=-(1).

(2)=(1) Using rank,m/m?* = n, if we choose x;,1,...,x,em such that
the images of x;,...,x, in m/m? form a basis then x,,...,x, generate m
and so forms a regular system of parameters. ®

Theorem 14.3. A regular local ring is an integral domain.

Proof. Let (R, m) be an n-dimensional regular local ring; we proceed by
induction on n. If n=0 then m is an ideal generated by 0 clements, so
that m = (0). This in turn means that R is a field. Thus a zero-dimensional
regular local ring is just a field by another name.

When n = 1, the maximal ideal m = xR is principal and ht m = 1, so that
there exists a prime ideal p # m with m > p. If yep we can write y = xa with
aeR, and since x¢p we have aep; hence p = xp, and by NAK, p =(0). This
proves that R is an integral domain. (There is a slightly different proofin the
course of the proof of Theorem 11.2; as proved there, a one-dimensional
regular local ring is just a DVR by another name.)

When n> 1, let p,,...,p, be the minimal prime ideals of R; then since
m ¢ m? and m & p, for all i, there exists an element xent not contained in
any of m?, py,...,p, (see Ex. 1.6). Then the image of x in m/m? is non-zero,
so that by the previous theorem R/xR is an (n— 1)-dimensional regular
local ring. By the induction hypothesis, R/xR is an integral domain, in
other words, xR is a prime ideal of R. If p, is one of the minimal prime ideals
contained in xR then since x¢p,, the same argument as in the n =1 case
shows that p; = xp,, and hence p; =(0). =

Theorem 14.4. Let (4, m, k) be a d-dimensional regular local ring; then
grm(A) = k[Xl 9 7Xd]’

and if y(n) is the Samuel function of 4 then

y(n)= (n;—d) for all n> 0.

Proof. Since m is generated by d elements, gr (A4) is of the form
k[X,,...,X,]/1,whereIisahomogeneous ideal. Now if I # (0), let felbea
non-zero homogeneous element of degree r; then for n > r the homogeneous
n+d— 1)

piece of k[X]/I of degree n has length at most ( J—1

—r+d—1 .
(n ;i 1 ), which is a polynomial of degree d—2 in n. This

implies that the Samuel function of A4 is of degree at most d — 1, and
contradicts dim A = d. Hence I = (0); the second assertion follows from
the first. m

Let (4, m) be a Noetherianlocal ring. Elements y,,...,y,emaresaid to be
analytically independent if they have the following property; for every
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homogeneous form F(Y,,...,Y,) with coefficients in 4,
F(»,,...,y,) = 0=the coefficients of F are in m.

If y1,---,y, are analytically independent and A4 contains a field k, then
F(y) #0 for any non-zero homogeneous form F(Y)ek[Y,....,Y.].

Theorem 14.5. Let (4, m) be a d-dimensional Noetherian local ring and
Xy,-;->Xa @ SYystem of parameters of A; then x,,...,x, are analytically
independent.

Proof. Set q=) x;A. Since q is an ideal of definition of A, by
Theorem 13.4, y%(n) = I(A/q") is a polynomial of degree d in n for n > 0. Set
Ajm = k; we say that a homogeneous form f(X)ek[X,...,X,] of degree n
is a null-form of q if F(x;....x;)eq"m for any homogeneous form
F(X)eA[X,...,X ] which reduces to f(X)modulo m. Write n for the ideal

of k[X,,...,X ] generated by the null-forms of q. Then

k[ X/~ ®q"/q"m,
and writing ¢ for the Hilbert polynomial of k[X]/n, we have ¢(n)
= l(q"/q"m) for n > 0. The right-hand side is just the number of elements in a
minimal basis of q", so that ¢(n)-{A4/q) = I(q"/q" T 1). Now

IQ"/a" 1) = x%y(n) — x(n — 1)
is a polynomial in n of degree d — 1, so that deg ¢ = d — 1, but if n 5 (0) this
is impossible. Thus n =(0), and the statement in the theorem follows at
once. W

Multiplicity

“Let (4, m) be a d-dimensional Noetherian local ting, M a finite A-module,

and q an ideal of definition of A (that is, an m-primary ideal). As we saw

in §13, the Samuel function I(M/q"*'M)=y},(n) can be expressed for
+ #>»0 as a polynomial in n with rational coefficients, and degree equal to
, dml M, and therefore at most d. In addition, this polynomial can only take
- integer values for n > 0, so it is easy to see by induction on d (using the fact
that y(n + 1) — y(n) has the same property) that

e, (n) =§T"d + (terms of lower order),

With ecZ. This integer will be written e(q, M). By definition we have the
following property.

. d! .
Formula 14.1, e(q, M) = lim ;FI(M/q"M), and in particular, if d =0 then
q,M):l(M) n— o
From this we see casily the following:

Formula 14.2. e(q, M)> 0 if dim M = d, and e(q, M) = 0 if dim M < d;
ormula 14.3. e(q", M) = e(q, M)r%;
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Formula 144. If q and q' are both m-primary ideals and q>¢  thep
e(g, M) < e(q’, M).

We set e(q, A) = e(q), and define this to be the multiplicity of g. In addition,
we will refer to the multiplicity e(m) of the maximal ideal as the multiplicity
of the local ring A, and sometimes write e(A) for it. For example, if 4 is 3
regular local ring then by Theorem 4, we can see that e(4)=1.

Theorem 14.6. Let 0 >M' — M — M" >0 be an exact sequence of
finite A-modules. Then

e(q, M) =e(q, M’) + e(q, M"). ,
Proof. We view M’ as a submodule of M. Then

(M/q"M) = I(M"/q"M") + M'/M’ "~ q" M),
and obviously "M’ = M'n¢"M. On the other hand by Artin—Rees, there
exists ¢ > 0 such that

Mngd"Mcq" ‘M forall n>c.
Hence

MG “My<IM/Mng"M)<I(M'/q"M).
From this and Formula 14.1 it follows easily that

e(q, M) — e(q,M") = lim d—il(M’/M’r\q"M) =e(q, M)
Theorem 14.7. Let {p,,...,p,} be all the minimal prime ideals of A such
that dim A/p = d; then

ela. M) = 3 el A/p)IM,),

where q; denotes the image of g in A/p; and {(M ) stands for the length of M, as
A,-module.
Proof (taken from Nagata [N1]). We write ¢ = Y ;/(M,) and proceed by
induction on o. If 6 =0 then dim M < d, so that the left- hand side is 0, and
the right-hand side is obviously 0; now suppose ¢ > 0. Now there is some
pe{py,...,p,} for which M_ #0; then p is a minimal element of
Supp(M). Hence peAss(M), that is M contains a submodule N isomorphic (
to A/p. Then

e(q, M) = e(q, N) + e(a, M/N).
On the other hand, N, ~ A,/pA, and N, =0 for p, # p, so that (N} =
and the value of ¢ for M /N has decreased by ong, so that the theorem holdS
for M/N. However, from the definition

e(a, Ny = e(q, A/p) = ¢(q, A/p), where q=(q+p)/p.
Putting this together, we see that the theorem also holds for M. ®

Theorem 7 allows us to reduce the study of e(q, M) to the case that 4 isaP
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integral domain and M = A. In particular, if 4 is an integral domain then
I(M(O)) is just the rank of M, so that we obtain the following theorem.

Theorem 14.8. Let A be a Noctherian local integral domain, q an ideal of
definition of 4 and M a finite A-module; then

elq, M)=e(q)'s, where s=rank M.

Theorem 14.9. Let (A, m) be a Noetherian local ring, g an ideal of definition
of A,and x,,...,x;asystem of parameters of A contained in . Suppose that
x;€q" for 1 <i<d. Then for a finite A-module M and s=1,...,d we have
e(Q/(Xl, e 7xs)’ M/(xl, s ’xs)M) = Viva... vse(q’ M)
In particular if s =d, we have
IM/(xy,....x)M) = vyv, ... velq, M)
Proof. Itisenough to prove thecase s=1. Weset A'= A/x, 4,q = q/x, A4,
M =M/x; M and v=v,. By Theorem 1, we have dimA’=d — 1. On the
other hand,
L HMYQTM) = I(M/x, M + " M)
=IM/q"M)—Kx,M + q"M/q"M).
In addition, in view of (x;M+q"M)/q"M ~x, M/x; MAq"M ~ M/
(@"M:x;) and ¢"" "M < q"M:x,, we have
' —lx; M +q"M/q"M) > — (M/q" " M),
, "?{;,and therefore
- (M’ [q" M) > (M /" M) — [(M/q" ™" M).
When n > 0 the right-hand side is of the form
elg, M)
d!
_da, M)
d—1n
80 that the assertion is clear. ®

A case of the above theorem which is particularly simple, but important,
the following.

[n? — (n — v)*] + (polynomial of degree d — 2 in n)

v-n?~! 4+ (polynomial of degree d — 2 in n),

?heorem 14.10. Let (A, m) be a d-dimensional Noetherian local ring, let
C15-..,X, be a system of parameters of A, and set q = (x,,...,x,); then

i(A/q) = e(q),
Aud if in addition x;em” for all i then [(4/q) > ve(m).

Theorem 14.11. Let A, m, x; and q be as above. Let M be a finite A-module,
nd set 4' = A/x; A,M' = M/x,Mandq = q/x; 4 = Y 4x;A. Thenifx,isa
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non-zero-divisor of M, we have the following equality
elg, M) =elq’, M').
Proof. Since [(M'/q" "' M')=I(M/x, M + q"*' M) we have
(Mq" M) — M/ " T M) = 1(x, M +q" "' M/q" " M)
=I(x, M/x; M q"" ' M) = I(M/(q""* M:x,))
=(M/q"M) — [((a"* " M:x,)/q"M).
On the other hand, setting a =Y%x;4 we have q=x,A+aand "' =
x;9"+ a"*1, and therefore
Q" M:x, = q"M + (a"" 1 M:x,).
Moreover, by Artin—Rees, there is a ¢ >0 such that for n> ¢ we have
a" T PMAx, M=a"" ("' Mnx, M), and therefore a" "' M:x; ca" M.
Thus
(@' M:x,)/Q"M = ("M + (a"* ' M:x,))/q" M
< (q"M +a" M)q"M
~a" " M/a" T Mnq"M.
Now a""“M/a""*M nq"M is a module over A/q°, and since a is generated

—c+d-2
by d — 1 elements, a" ¢ is generated by ( 4 2+ ) ) elements. Thus
for n> ¢ we have
—c+d—2
l(a"“M/a"“Mmq"M)S(n e )'Z(A/qc)m,

where m is the number of generators of M. The right-hand side is a
polynomial of degree d — 2 in n, so that

e(q’, M) =(d— 1) lim [(M'jq" * M")/n? 1

=d-1) 'i:nf LM/q" ' M) — (M /q"M)]/n? ™!
=e(q,M) | ]

Theorem 14.12 (Lech’s lemma). Let A be a d-dimensional Noetherian
local ring, and x4, ..., x, a system of parameters of 4; set q = (x,,...,x,),and
suppose that M is a finite A-module. Then
e@M)= lim I(M/(x{‘,...,x‘;“)M).
min(ve)~ o Vi vy

Proof. Ifd = 0 then both sides are equal to /(M). Ifd = 1 then the right-hand
side is exactly Formula 14,1 which defines e(q, M). For d > 1 we us€
induction on d.

Setting N; = {meM|x{m =0} we have N, = N, < - so that there is &
¢>0suchthat N.=N_, , =--. If we set M’ = x{ M then x, is a non-zero-
divisor for M’, and there is an exact sequence 0> N, — M — M' 0.
Since N, is a module over 4/xi;A we have dim N, <d, and therefore
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ela, M) = e(q, M’). On the other hand,

UM/, oxg)M) — (M (XY xi)M')
=N+ (x}, .. x)MJ(xY, .. X )M)
=N /N AT xg)M)

SUN ST, x39N).

If v, > c then x7'N =0, and N, is a module over the (d — 1)-dimensional
local ring A/x{ A, so that by induction there is a constant C such that as
min (v;) = 00 we have
INJx, )N =N (3, x3)NY < Covy.ovg.
Therefore,
lm [I(MAxS, ..., x3M) — (M (xT .., x5 )M) /vy .. v =0.
This means that we can replace M by M’ in the theorem, and so we can
assume that x, is a non-zero-divisor in M. Then by the previous theorem we
have e(q, M) = e(q, M), with § = q/x, A and M = M/x, M. If we furthermore
set
E=(x%,...,x3)M and F=MJE
then by Theorem 9, we have
elg, M) vy..vg < MAXY, ..., x}*)M) = (F/x}'F)
= S U F/x Fy < vy (F /e Fy = vy (M /x; M + E)
i=1
‘ =v, (M/(x%,...,x3M).
Then by induction on d we have
m (M /(xS .. X3 OM)vy. vy =m (M (X2, ... x3)M)/v,. . v,
=e(g,M). ®m
Although we will not use it in this book, we state here without proof a
remarkable result of Serre which shows that multiplicity can be expressed

. as the Euler characteristic of the homology groups of the Koszul complex
(discussed in §16).

. Theorem. Let A be a d-dimensional Noetherian local ring, and x,,...,Xx,a
- 8ystem of parameters of A4; set q=(x,,...,X,) and let M be a finite A-
# module. Then
e(q, M) =Y (— 1)'l(H{x, M)).
= For a proof, see for example Auslander and Buchsbaum [2].
As we have seen in several of the above theorems, the multiplicity of
ideals generated by systems of parameters enjoy various nice properties. We
are now going to see that in a certain sense the general case can be reduced
to this one. We follow the method of Northcott and Rees [1].
* Quite generally, let A be a ring and a an ideal. We say that an ideal bis a
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reduction of a if it satisfies the following condition:
bca, andforsome r>0 wehave o t!=ba"
Ifbis a reduction of aand a"*! = ba" then for any n > O we have a"*" = by,

Theorem 14.13. Let (A, m)be a Noetherian local ring, q an m-primary idea]
and b areduction of g; then b is also m-primary, and for any finite A-module
M we have

e(q, M) = e(b, M).

Proof. If ¢"*'=bq" then q"*'<bcgq, hence b is also m-primary.
Moreover,

[(M/6"™"M) = [(M[q" ™M) = (M/b"q") > [(M/b"M),
so that e(q, M) = e(b, M) follows easily.

Theorem 14.14. Let (A, m) be a d-dimensional Noetherian local ring, and
suppose that A/m is an infinite field; let q = (u,,...,4,) be an m-primary
ideal. Then if y, =) a;u; for 1 <i<d are d “sufficiently general® linear
combinations of uy,...,u, the ideal b = (y,,...,y,) is a reduction of q and
{¥1,---,v4} is a system of parameters of A.

Proof. If d =0 then q" = (0) for some r > 0, hence (0) is a reduction of q
so that the result holds. We suppose below that d > 0.

Step 1. Set A/m =k and consider the polynomial ring k[ X ,,..., X,] (or
k[ X] for short). For a homogeneous form ¢(X) = ¢(X {,...,X,)e A[X] of
degree n, we write @(X)ek[X] for the polynomial obtained by reducing
the coefficients of ¢ modulo m. As in the proof of Theorem 5 we say that
P(X)ek[X] is a null-form of q if ¢(u,,...,u)eq"m; this notion depends
not just on q, but also on uy,...,u, However, for fixed ¢ it does not
depend on the choice of ¢. We write Q for the ideal of k[ X generated by
all the null-forms of q, and call Q the ideal of nuli- forms of q. One secs
easily that all the homogencous elements of Q are null-forms of g, and
that the graded ring k[ X]/Q has graded component of degree n isomorphic
to q"/q"m, so that we have

k[X1/Q = @ q"/q"m = gr(A) ®,k.

n>0

Write ¢(n) for the Hilbert function of k[ X]/Q; then
o(n) = Il(a"/q"m) <Uq"/q"* ") < @(n)- I(A4/a) 1
(see the proof of Theorem 5). We know that for n » 0, the function i(q”/a"" )
is a polynomial in n of degree d — 1 (where d = dim A4). Thus from the
above inequality, ¢ is also a polynomial of degree d—1, so that by
Theorem 13.8, (ii), we have dimk[X]/Q =d.

Now set ¥ =) $kX,, and let P,,..., P, be the minimal prime divisors of
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0. By the assumption that d >0, we have P, V, so that P,nV is a
proper vector subspace of V. Since k is an infinite field,

V# U (VAP)

i=1
Hence we can take a linear form [;(X)eV not belonging to any P;. If
d >1 then similarly we can take I,(X) eV such that [,(X) is not contained
in any minimal prime divisor of (Q,,(X)), and, proceeding in the same
way, we get [;(X),...,l(X)eV such that (Q,l,,...,I,) is a primary ideal
belonging to (X ,...,X)).

Step 2. We let b be the ideal of A generated by ¢ linear combinations
L{u) =Y a;u; (for 1 <i<t)of uy,...,u, with coefficients in A. Then if we
set [(X)=L(X)=Y) a,;X; a necessary and sufficient condition for b to
be a reduction of q is that the ideal (Q,1,,...,1,) of k[ X] is (X,...,X)-
primary.

Proof of necessity. Suppose that bq"=q"*'. Then if M =M(X) is a
monomial of degree r + 1 in X ,..., X, we can write

M(w) = }i:L.-(u)Fi(u),

where the F{X) are homogeneous forms of degrees r with coefficients in
A. Thus

M(X) =Y I{X)F{X)eQ.
Hence

(Xq,.. . Xy <(Q,1,,....1).
Proof of sufficiency. We go through the same argument in reverse: if
M —3 I,F;cQ then

M) =Y L{uF{weq*'m
so that "*! < bq" + " ' m; thus by NAK, ¢"*! =bq'".

Step 3. Putting together Steps 1 and 2 we see that q has a reduction
b=(y,,...,y,) generated by d elements. Both q and its reduction b are
m-primary ideals, so that y,,...,y, is a system of parameters of A. We
are going to prove that there exists a finite number of polynomials D(Z,))
for 1 <a < vin sd indeterminates Z,;(for 1 <i<dand 1<j<s)such that
dlinear combinations y, = Yoau;( for 1 <i<d) generate a reduction ideal
of q if and only if at least one of D,(a;)) # 0. (The expression ‘d sufficiently
- general linear combinations’ in the statement of the theorem is quite vague,
but in the present case it has a precise interpretation as above.)

) Let G,(X),...,G,(X) be a set of generators of Q, with G; homogeneous
. of degree ej. For any sd elements «;; of k (for 1 <i<d and 1 <j<s), set
- Xy = Y ;X ;. We write I, for the homogcneous component of degree n
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of a homogeneous ideal I = k[X,,...,X ], and in particular we write
(X,....X),=V,, so that

(Xl""st)nC(Q7117'-"ld)©Vn=(Q’ll9""ld)"’
Set ¢, =dim, V,. We have
@Q.1,.. . A ={),F;+ Y G;H;|FeV,_, and HieV,_.,}.

Let K,,..., K,, be the elements obtained as Y I,F; + Y G,;H; as the F, run
through a basis of V,_, and the H; run independently through a basis
of V,_.; it is clear that they span (Q,/;,...,l;),. Each of K,,....K,, is a
linear combination of the ¢, monomials of degree n in the X, with linear
functions in the o;; as coefficients; we write out these coefficients in a
¢, x wmatrix. If ¢, («;) for 1 <v < p, are the ¢, x ¢, minors of this matrix
then the necessary and sufficient condition for (X ,..., X)) <(Q,!,,..., 1) to
hold is that at least one of the ¢,(«;) is non-zero. Therefore the ideal
(@,1,,...,0) will fail to be (X,,...,X/)-primary if and only if the
quantities o;; satisfy ¢,,(;;) = O for all n and all v. However, the ring k[Z;]
is Noetherian, so that the ideal of k[Z;;] generated by all of the ¢,(Z;) is
generated by finitely many elements D (Z;)) for 1 <a < v. These D, clearly
meet our requirements. M

Remark. The polynomials D,(Z;;) obtained above are in fact the necessary
and sufficient conditions on the coefficients «;; for the system of homo-
geneous equations [(X)==[(X)=G,(X)="=G,(X)=0to have a
non-trivial solution, and as such they are known as a system of resultants,
Here we have avoided appealing to the classical theory of resultants by
following a method given in Shafarevich [Sh].

If k=A/m is a finite field then Theorem 14 cannot to be used as it
stands, but we can use the following trick. Let x be an indeterminate over
A, and set S = A[x] — m[x]; then S consists of polynomials having a unit
of A among their coefficients, and so the composite of the canonical maps
A — A[x] —> A[x]s is injective. (In fact S does not contain any zero-
divisors of A[x], so that A < A[x]} < A[x]g; for this see [AM], Chap. 1,
Ex. 2} Following Nagata [N1] we write A(x) for A[x]s. This is a
Noctherian local ring containing A, with maximal ideal mA(x), and the
residue class field A(x)/mA(x) is the field of fractions of A[x]/m[x] = k[x],
that is, the field k(x) of rational functions over k; this is an infinite field.
If g is an m-primary ideal of A then gA(x) is a primary ideal belonging
to mA(x). Moreover, since A(x) is flat over A, we see that quite generally
if I oI are ideals of A such that I/I' ~k, then

TAX)I'A(x) ~ (I') ®,A(x) = k® A(x) = A(x)/mA(x).
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This gives [,(A/q") = 1 4, (A(x)/q"A(x)), so that

dim A =dim A(x) and e(q) = e(qA(x)).

Thus there are many instances when we can discuss properties of
e(q) in terms of A(x), to which Theorem 14 applies.

14.1.

14.2.

14.3.

14.4.

14.5.

14.6.

Remark.

Exercises to §14. Prove the following propositions.

Let (4, m) be a Noetherian local ring and set G = gt, (A).

() If G is an integral domain then so is 4 (hence Theorem 3 also follows
from Theorem 4).

(ii) Let k be a field, and A =k[X, Y]AY? — X?); then A is an integral
domain, but G has nilpotents.

Let (4, m) and G be as above. For ae 4, suppose that aem' but a¢gm’™!,
and write a* for the image of a in m//m'*?, viewed as an element of G;
define a* to be the leading term of a. Set 0¥ = 0. Then

(i) if a*b* # 0 then (ab)* = a*b*;

(i) if a* and b* have the same degree and a* + b* # 0 then (a + b)* =
a* + b*;

(iii) let I = m be an ideal of A. Write I* for the ideal of G generated by all
the leading terms of elements of I; then setting B = A/I and n=m/I, we
have gr,(B) = G/I*.

In the above notation, if G is an integral domain and I =aA then
I*=a*G. If I=(a,,...,a,) with r>1 then it can happen that
I* #(a%,...,a¥). Construct an example.

Let (4, m) be a regular local ring, and K its field of fractions.

(1) For 0 # aeA, set v{a) =i if aem’ but a¢gm‘*!; then v extends to an
additive valuation of K.

(ii) Let R be the valuation ring of v; then Ris a DVR of K dominating A.
Let x;,...,x, be a regular system of parameters of A, and set
B = A[x,/x,,..-,x4/x,] and P =x,B; then P is a prime ideal of B and
R=B,.

In the above notation, if 0 # fem then u(f) is equal to the multiplicity of
A/f).

(Associativity formula for multiplicities.) Let A be a d-dimensional Noeth-
erian local ring, x,...,X, a system of parameters of 4, q =(x,,...,x,), and
for s<dlet a=(xq,...,x,). Write " for the set of all prime divisors of a
satisfying htp = s, coht p = d — 5. Let M be a finite A-module. Use Lech’s
lemma to prove the following formula:

ea. M)= Y ela-+p/p)yead,, M,);

pel’
{in particular, it follows that T # &).

The name of the formula comes from its connection with the associativity

of intersection product in algebraic geometry. For details, see [S3], pp. 84-5.



116 Dimension theory

14.7. Let (A, m) be an n-dimensional Noetherian local integral domain, with
n>1.1f0# fem then A, is a Jacobson ring (sec p. 34).

15 The dimension of extension rings

1. Fibres

Let ¢:4 — B be a ring homomorphism, and for peSpec 4, write x(p) =
A,/pA,; then Spec(B®xlp)) is called the fibre of ¢ over p. As we
saw in §7, it can be identified with the inverse image in Spec A of p under the
map “@:Spec B — Spec A induces by ¢. The ring B ® x(p) will be called the
fibre ring over p. When (A4, m) is a local ring, m is the unique closed point of
Spec A4, and so the spectrum of B® x(m) = B/mB is called the closed fibre of
¢.If Ais anintegral domain and X its field of fractions then the spectrum of
B®,K = B®,k(0) is called the generic fibre of .

Theorem 15.1. Let ¢:A — B be a homomorphism of Noetherian rings,
and P a prime ideal of B; then setting p = Pn A4, we have

(i) ht P < htp + dim By/pBp;

(i) if  is flat, or more generally if the going-down theorem holds between
A and B, then equality holds in (i).

Proof. We can replace A and B by A, and Bp, and assume that (4, m) and
(B, n) are local rings, with mB < n. Rewriting (i} in the form

dim B < dim A + dim B/mB

makes clear the geometrical content. To prove this, take a system of
parameters x,,...,X, of A, and choose y,,...,y,eB such that their images
in B/mB form a system of parameters of B/mB. Then for v, u large enough
we have n"cmB+) y;B and m*c ) x;4, giving n"* <) y,B+) x;B.
Hence dim B<r +s.

(ii) Let dim B/mB =s,and let n = P, > P, > = P be a strictly decreas-
ing chain of prime ideals of B between n and mB. Obviously we have
PnA=mfor0<i<s NowsetdimA=randlet m=p;op, 229
be a strictly decreasing chain of prime ideals of A; by the going-down
theorem, we can construct a strictly decreasing chain of prime ideals of B

PoP,_  o>P,, suchthat P,,,nA=p,

Thus dim B > r + s, and putting this together with (i) gives equality. =

Theorem 15.2. Let ¢:4 —> B be a homomorphism of Noetherian rings,
and suppose that the going-up theorem holds between 4 and B. Then if
p and q are prime ideals of A such that p > g, we have

dim B® x(p) = dim B® (q).
Proof. Set r=dimB®«(q) and s=ht(p/q). We choose a strictly
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increasing chain 0, < @, = = @, of prime ideals of B lying over q and

a strictly increasing chain g =p, cpy < cp,=p of prime ideals of 4.

By the going-up theorem there exists a chain Q,<Q,,, < <=Q,,, of

prime ideals of B such that Q,,,nA=p, We set P=Q,,; then
ht(P/qB)=r+s and PnA=p.

Thus applying the previous theorem to the homomorphism A/q — B/qB

induced by ¢ we get r + s <ht(P/qB) < s + dim Bp/pBp, and therefore
r<dim Bp/pBp < dimB®«k(p). =

Theorem 15.3. Let ¢:A— B be a homomorphism of Noetherian rings, and
suppose that the going-down theorem holds between A and B. If p and q
are prime ideals of 4 with p>gq then

dim B®x(p) <dim B®x(q).

Proof. We may assume that ht(p/q)=1, and it is enough to prove that,
given a chain Poc P, c ... P, of prime ideals of B lying over p such that
ht(P;/P;_,)= 1 we can construct a chain of prime ideals @, < Q, < ... =@,
of B lying over g such that

Q,<P; (0<i<r) and ht(Q/Q,,)=1 (0<i<y).

We can find @, by going down. If r> 1 then take xep —q and let Ty, ..., T,
- be the minimal prime divisors of Q,+xB. Then ht(T,/Q,)=1, while
ht(P,/Q,)>2, hence we can choose

yeP, _(UiTi)-

Let Q, be a minimal prime divisor of Q,+ yB contained in P,. Then

ht(Q,/Q0) =1, and Q, # T, for all i, hence ¢(x)¢Q,.
Therefore Q; N A# p, and since ht(p/q)= 1 we must have Q, nA=q. By
the same method we can successively construct Q,,0,,...,0,. W

. & Polynomial and formal power series rings

. Theorem 15.4. Let A be a Noetherian ring, and X,,..., X, indeterminates
. over 4. Then

dim A[X,,...,X,] =dimA[ X,,...,X,]=dim A4 +n.

PP'OOf. It is enough to consider the case n=1. For any peSpecA, the
mng ALX]1®,x(p) = x(p)[X] is a principal ideal ring, and therefore one-
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dimensional; also A[X] is a free A-module, hence faithfully flat, so by
Theorem 1, (i), dim A[X]=dim A4 + 1.
For A[X] it is not true in general that A[X [® 4x(p) and r(p)[X]
coincide; however, if m is a maximal ideal of A we have
A[X]@xm) = A[X]®(4/m) = (4/m)[X],
and this fibre ring is one-dimensional. Also, as we saw on p. 4, every
maximal ideal MM of A[X] is of the form IM = (m, X), where m =M~ 4
is a maximal ideal of A. Thus for a maximal ideal 9 of A[X] we have
htIR = ht(I~ A) + 1;
conversely, if m is a maximal ideal of 4 then ht(m,X)=htm+ 1, and
putting these together gives dimA[X] =dimA+1. =

Remark 1. It is not necessarily true that a maximal ideal of A[X7] lies
over a maximal ideal of A. For example, if 4 is a DVR and ¢ a
uniformising element then A[t™']=K is the field of fractions of A, so
that A[X]/(tX — 1) ~ K, and (tX — 1) is a maximal ideal of A[ X]; however,
tX—1nA=(0).

Remark 2. It is quite common for fibre rings of 4 — A[X,...,X,]
to have dimension strictly greater than n. For example, let k be a field and
set A=k[Y,Z]. It is well-known that the field of fractions of k[ X] has
infinite transcendence degree over k(X) (see [ZS], vol. IT, p. 220). Let u(X),
v(X)ek[X] be two elements algebraically independent over k(X), and
define a k-homomorphism (continuous for the X-adic topology)
(p:A[[X ]] -— k[[X ]]

by @(X) =X, ¢(Y) = u(X),o(Z) = v(X). Ifweset Ker ¢ = Pthen P~ A = (0),
and A[[X]]/P:k[[X]] is one-dimensional. Now every maximal ideal of
A[X] has height 3, and, as we will see later, A[X] is catenary, so that
ht P=2. Thus we see that the generic fibre of 4 — A[X] is two-

dimensional.

3. The dimension inequality

We say that a ring A is universally catenary if A is Noetherian and every
finitely generated A-algebra is catenary. Since any A-algebra generated
by # elements is a quotient of A[X,..., X,], and since a quotient of
catenary ring is again catenary, a necessary and sufficient condition for 2
Noetherian ring 4 to be universally catenary is that A[X,,...,X,] 1
catenary for every n >0, (In fact it is known that it is sufficient for A[X 1]
to be catenary, compare Theorem 31.7.)

Theorem 15.5 (1. S. Cohen [3]). Let A be a Noetherian integral domain, and
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B an extension ring of A which is an integral domain. Let PeSpec B and
p=Pn A; then we have

() htP+ tr.deg,,x(P) < htp + tr.deg, B,

where tr.deg,B is the transcendence degree of the field of quotients of B
over that of 4.

Proof. We may assume that B is finitely generated over A. For if the right
hand side is finite and m and ¢ are non-negative integers such that m < htP
and ¢<trdeg.,x(P), then there is a prime ideal chain
P:Po o>P, > >P, in B. Take aeP,— Py, 0<i<m, and let
¢4»---»GEB be such that their images modulo P are algebraically
independent over A/p. Set C = A[{a},{c;}]. If the theorem holds for C,
then we have m + t < htp + tr.deg,C < htp + tr.deg,B. Letting m and ¢ vary
we see the validity of (x).

We may furthermore assume, by induction, that B is generated over 4 by
asingle element: B = A[ x]. We can replace A by A, and B by B, = 4,[ x],
and hence assume that A is local and p its maximal ideal. Set k = A/p and
write B= A[X]/Q. If Q = (0) then B= A[ X ] and by Theorem 1 we have
htP = htp + ht(P/pB), and since B/pB =k[X] we have either P=pB or
ht(P/pB) = 1. In both cases the equality holds in (*).

_ If Q#(0) then trdeg,B=0. Since A4 is a subring of B we have
Qn A=1(0), so that writing K for the field of fractions of 4 we have
htQ =htQK[X]=1. Let P* be the inverse image of P in A[X]. Then
P=P*/Q k(P)=k(P*), and htP<htP*—htQ=htP*—-1=htp+1—
tr.deg, x(P*)—1=htp—trdeg,,x(P). W

- Definition. Suppose that 4 and B satisfy the conditions of the previous
+. theorem. We refer to (x) as the dimension inequality, and if the equality in (%)
bolds for every PeSpec B, we say that the dimension formula holds between
A and B. The above proof shows that dimension formula holds between A4
and A[X,,....X,].

Theorem 15.6 (Ratliff). A Noetherian ring A is universally catenary if and
: ?nly if the dimension formula holds between A/p and B for every prime
. fdeal p of 4 and every finitely generated extension ring B of A/p which
‘= 18 an integral domain.

*. Proof of “only if”. If A is universally catenary then so is A/p, so that we
& Beed only consider the case that A is an integral domain, and B is a finitely
Benerated extension ring which is an integral domain. If
B=4[x,,. .. ,X,]/Q and P = P*/Q, then since A[X,, ..., X,] is catenary
<. We have htP = htP* — htQ, and an easy calculation proves our assertion.
Proof of “if*. We suppose that A is not universally catenary, so that there
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exists a finitely generated A-algebra B which is not catenary; without loss
of generality we can assume that B is an integral domain. Write p for the
kernel of the homomorphism 4 — B. There exist prime ideals P and Q
of B such that

P<=Q, ht{(Q/P)=d but ht@>htP+d.
We write k&= ht P, choose a,,...,a,eP such that ht(a,,...,a,)=h, and
set I =(a,,...,a,), so that P is a minimal prime divisor of I. Let

I=qn-nq,
be a shortest primary decomposition of I, with P the minimal prime
divisor of q,. Then for b€Qq,...q, — P we have

I:b*'B=gq, for v=12,...
We set y; =a,/b for 1 <i<h,

C=B[y,.-,¥u)s J=01,-. ., yCand M=J+QC=J+Q.
Every element of C can be written in the form u/b* for suitable k, with
ue(l + bBY, so that if zeJnB then zb’el holds for sufficiently large
v. Hence zeI:b” = q,. The converse inclusion q, =Jn B is obvious, hence
JnB=gq,. Thus

MnAB=(J+Q)nB=(JnB)+Q=0(Q,

C/J ~BJq, and C/M ~ B/Q.
Therefore, C,/JCy = By/q,B, is a d-dimensional local ring, and J is
generated by h elements, so that

htM =dimCy, <h+d<htQ.
Now C and B have the same field of fractions, and k(M) = x(Q), so that
this inequality implies that the dimension formula does not hold between
B and C. This is a contradiction, since we are assuming that the dimension
formula holds between A/p and B and between A/p and C, and one sees
easily that it must then hold between Band C. =

4. The Rees ring and gr,(A)

Let A be a ring, I an ideal of A and t an indeterminate over A. Consider
A[t] as a graded ring in the usual way. We obtain a graded ring R, < A[?]
by setting

R, LA D= ct"c,el"} = @I”t”cA[t]

IfI =(a,,...,a,) then R, can be written R, = A[a,t,...,a,t], so that R, is
Noetherian if A4 is.
R, isrelated to the graded ring gr,(A) associated with A and I by the fact
that
gr(A)= PI/I" ~R /IR,
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Now let u=t"1, and consider A[t,u] = A[t,t” '] as a Z-graded ring in
the obvious way. The Rees ring R(4,1) is the graded subring
R=R(A,I)=R+[u]={2c,,t" }cA[t,t‘l].

c,€l" for n=0
c,€A for n<0

Since

uR = {Zc,,t c,€A for n< —1
we have gr;(4) ~ R/uR.

Set S={l,u,u’...}. Then Rg=R[u"']=R[t]=A[t"',t], and
Re/(1 —w)Rs= A[1™",¢]/(1 —1) = A. But Ry/(l —u)Rs=(R/(1— )R,
where S is the image of S in R/I —u)R, and since S=1, we see that
Rg/(1 —u)R;= R/(1 — u)R. Thus we have

R{1—u)R=A and R/uR=gr/A),
so that the graded ring gr(4) is a ‘deformation’ of the original ring A4,
with R as ‘total space of the deformation’, in the sense that R contains a
parameter u such that the values u =1 and 0 correspond to A and gr,(A),
respectively.

We also have

WRNA=1I" forall n=0
and this property is often used to reduce problems about powers of I to
the corresponding problems for powers of the principal ideal uR.

We conclude this section by applying the dimension inequality to the
study of the dimension of the Rees ring and gr (A).

Let A be a Noetherian ring, I =) a,4 a proper ideal of 4, and ¢ an
indeterminate over 4. We set

u=t"!, R=R(AI)=A[uat,...,at] and G=gr(A).
We have R c A[t,u] and R/uR ~ G. For any ideal a of A, set

o =aA[t,u]nR.
That o’'n A =aA[t,u]nA=aq, so that for a; #a, we have a)#aj}.
Moreover, if p is a prime ideal of 4 then p’ is prime in R, and the same
thing goes for primary ideals. If (0) = q; N - N q, is a primary decomposi-
tion of (0) in A then (0) =g} N Nq, is a primary decomposition of (0)
in R. Hence if p,, (for 1 < i < m) are all the minimal prime ideals of A then
{pbi}lgigm is the set of all minimal prime ideals of R. Let p be a prime
ideal of 4 with ht p = h,andlet p = p, > p, >+ > p, be a strictly decreasing
chain of prime ideals of 4; then p’ > p), >+ > p}, is a strictly descending
chain of prime ideals of R, so that

htp <hty'.
Conversely, suppose that PeSpec R and Pn A = p. Let p,; be a minimal
prime of R contained in P and such that ht P =ht(P/py,); then R/pp, o

c,el"! for n> 0}
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A/po;» so that by the dimension inequality
ht P = ht(P/po;} < ht(p/po) + 1 — tr.deg,
<htp+1.
Hence dimR <dim A4+ 1. On the other hand A[u,t]=R[u"'] is a
localisation of R so that dim R > dim A[u,t] = dim A + 1, so that finally
dimR=dmA + 1.
Moreover, for any peSpecA we set o, =a;modp, so that Rip' =
(A/p)u,a1t,..., o,t], and hence tr.deg, w(p’)=1; carrying out the above
calculation using the dimension inequality with p’ in place of P we get
htp’ < htp, and so
htp =htp".

We now choose a maximal ideal m of A containing I; then since
R/m’ =(4/m)[u] we see that M =(m’,u) is a maximal ideal of R and
9N #m', so that ht 9 > ht m'. However, by the dimension inequality, we
have ht M <htm+ 1 =htm' + 1. Thus

htM=htm'+ 1 =htm+ 1,
The element u is a non-zero-divisor of R so that considering a system of
parameters gives ht (M/uR) = ht P — 1 = htm. Thus providing that there
exists a maximal ideal such that htm =dim A containing /, (in particular
if A is local), then we have

dim G = dim(R/uR) = dim A.
We summarise the above in the following theorem.

k(P)

()

Theorem 15.7. Let A be a Noetherian ring and | a proper ideal; then
setting R = R(A4, I} and G = gr,(A) we have

dimR=dimA+1, dimG<dimA.
If in addition A is local, then

dim G = dim A.

Exercises to §15. Let k be a field.

15.1. Let A=k[X,Y]cB=k[X,Y,X/Y], and P=(Y,X/Y)B,p=(X,V)4;
then check that P~ A = p, ht P = htp = 2, and dim B,/pBp = 1, and hence
that

htP < htp + dim Bp/pBp.

Show also by a concrete example that the going-down theorem does not
hold between A and B.

15.2. Does the going-up theorem hold between A and B, where A= k[X]<
B=k[X,Y]?

15.3. In Theorem 15.7, construct an example where dim G < dim 4.
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Regular sequences

In the 1950s homological algebra was introduced into commutative ring
: theory, opening up new avenues of study. In this chapter we run through
.some fundamental topics in this direction.

In §16 we define regular sequences, depth and the Koszul complex. The
otion of depth is not very geometric, and rather hard to grasp, but is
an extremely important invariant. It can be treated either in terms of
xt’s, or by means of the Koszul complex, and we give both versions. We
iscuss the relation between regular and quasi-regular sequences in a
ransparent treatment due to Rees. § 17 contains the definition and principal
roperties of Cohen—Macaulay (CM) rings. The theorem that quotients
f CM rings are always catenary is of great significance in dimension
heory. In §18 we treat a distinguished subclass of CM rings having even
icer properties, the Gorenstein rings. In the famous paper of H. Bass [1],
orenstein rings are discussed using Matlis’ theory of injective modules.
ut here we give an elementary treatment of Gorenstein rings following
reco before going through Matlis’ theory.

16 Regular sequences and the Koszul complex

4 Let A be a ring and M an A-module. An element ae4 is said
jito be M-regular if ax # 0 for all 0 # xe M. A sequence a,,.. ., a, of elements
fof 4 is an M-sequence (or an M-regular sequence) if the following two
onditions hold:

« (1) a, is M-regular, a, is (M/a,M)-regular,..., a, is (M/Y 1" a;M)-
egular;

L M/Y5aM %0,

ote that, after permutation, the elements of an M-sequence may no longer
form an M-sequence.

Theorem 16.1. If a,,...,a, is an M-sequence then so is ay',...,a," for
1y positive integers vy,...,V,.

roof. It is sufficient to prove that if a,,...,a, is an M-sequence then so
ay, a,,...,a,. Indeed, assuming this, we have in turn that a}!, a,,..., 4,
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is an M-sequence, then setting M, = M/al'M that a,, as,...,q,
and hence also a3?, a,,...,a, is an M -sequence, and so on. Also, the
second condition M # )] a}'M is obvious.

Let us now prove by induction on n that if b,,..., b, is an M-sequence,
and if b & + -+ b,¢, =0 with £,eM then &eb M+ +b,M for all
i. First of all from the condition that b, is not a zero-divisor modulo
by,...,b,_, we can write

n—1
&= bim;, with neM.
1

Therefore Y 1~ 'by(&; + by} =0, so that by induction we have

&+ bayebM+--+b,_ M for 1<ig<n—1,
giving £;,€eb M +--- 4+ b,M for 1 < i < n— 1. The condition for &, is already
known

Now assuming v> 1 we prove by induction on v that a}, a,,...,a, is

an M-sequence. Since a, is M-regular, so is aj. For i > 1, suppose that
for some weM we have

aw=ail;+al, 4+ +a_ &, with eM.
Then since a}~?, 4,,...,q; is an M-sequence, we can write

w=a;" 'ny++a;_n-, with n,eM.
Hence we get

0=ay"Ya & —am) + ay&y —am) + -+ a; (& —am;—y).
The above assertion gives a,& —am€a} ‘M +a,M+ - +a;_ M,
and hence amn,ea;M +a,M + - +a,_ M. Therefore n,ea;M + -+
a;_;M, and so as required we have weaiM +a,M +--+a,_ M. R

Let A be aring, X4,..., X, indeterminates over 4, and M an A-module.
We can view elements of M®,A[X,..., X,] as polynomials in the X;
with coefficients in M,
FX)=F(X,,....X))= Y X0 X%, with {,eM.

For this reason we write M{X,..., X, ] for M®,A[X,,..., X,]; we cani
consider this either as an A-module or as an A[X,,..., X, ]-module. For
a,,...,a,6A and FeM[X,,...,X,], we can substitute the g; for X; 10
get F(ay,...,a,)eM.

Definition. Let a,,...,a,eA, set [ =Y a;A, and let M be an A-module
with IM # M. We say that a, ..., a, is an M-quasi-regular sequence if the
following condition holds for each v:
(*) F(X,,...,X)eM[X,,...,X,] is homogencous of degree v and
F(a)eI’*'M implies that all the coefficients of F are in IM.
This notion is obviously independent of the order of ay,...,a,.
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In the above definition it would not make any difference if we replaced
+the condition that F(a)eI"™*M by the condition F(a) = 0. Indeed, if F is
nomogeneous of degree v and F(a)el **1M then there exist a homogeneous
element G(X)eM[X,,..., X,] of degree v + 1 such that F(a) = G(a). Then
write G(X) = Y1 X,G{X) with each G, homogeneous of degree v, and set
. t"“j‘ﬂl‘()():F(X)—ZaiG,-(X), so that F* is homogeneous of degree v and
F*(a) =0. Moreover, if F* has coefficients in IM then so does F.
. We can define a map ¢@:(M/IM)[X,,... X, ]—egM=0FP,.,
- PM/I’T'M as follows: taking a homogeneous element F(X)eM[X] of
" degree vinto the class of F(a) in I"M/I"** M provides a homomorphism (of
. additive groups) from M[X] into gr,M which preserves degrees. Since
- IM[X1 is in the kernel, this induces a homomorphism
o:MIXV/IM[X]=M/IM)[X] —gr, M,
“~ which is obviously surjective. Then ay,...,a, is a quasi-regular sequence
- precisely when ¢ is injective, and hence an isomorphism.

Theorem 16.2. Let A be a ring, M an A-module, and a,,...,a,e4; set
I=(ay,...,a,)A. Then we have the following:

@) if a,,...,a, is an M-sequence then it is M-quasi-regular;
o (i) if ay,...,4a, is an M-quasi-regular sequence, and if xeA satisfies
. IM:x=1IM then I"M:x ="M for any v>0.
Proof (taken from Rees [5]). First of all we prove (ii) by induction on v.
The case v=1 is just the assumption; suppose that v> 1. For {eM, if
x¢el'M then also x&el*”'M, so that by the inductive hypothesis
- ¢el’ M, and hence we can write ¢=F(a) with F=F(X)eM[X,,...,
© X,] homogeneous of degree v—1. Now x&=xF(a)el'M, so that by
i~ definition of quasi-regular sequence each coefficient of xF(X) belongs to
- IM. Using IM:x = IM once more we find that the coefficients of F(X)
- also belong to IM, and therefore & = F(a)eI*M.
Now we prove (i) by induction on n. The case n=1 can easily be
.. checked. Suppose that n > 1, and that the statement holds upton—1,so
© that in particular ay,...,a,-1 is M-quasi-regular. Now let F(X)e
M[X,,...,X,] be homogeneous of degree v, such that F(a) = 0. We prove
by induction on v that the coefficients of F belong to IM. We separate
out F(X) into terms containing X, and not containing X, writing

FX)=G(Xy..., X,_ )+ X, H(X,,..., X,).

Here G is homogeneous of degree v and H of degree v — 1. Then, as we
~ Pproved in (ii),

H(o)e(a,,...,a,—)"M:a,=(a,,...,a,_)’M cI’M,
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and hence, by induction on v, the coefficients of H(X) belong to IM.
Moreover, by the above formula there is a homogeneous polynomial
MX,,...,X,—1) of degree v with coefficients in M such that H(aj=
Ma,,...,a,_,), and so setting
G(Xq,.. . X+ anX,y,...,X,_)=9g(X),

since a,,...,4,_1 I8 M-quasi-regular, we get that the coefficients of g
belong to (ai,...,a,-,)M; therefore the coefficients of G belong to
(@y,...,.a)M. =

This theorem holds for any 4 and M, but as we will see in the next
theorem, under some conditions we can say that conversely, quasi-regular
implies regular. Then the notions of regular and quasi-regular sequences
for M coincide, and so reordering an M-sequence gives again an M-
sequence.

Theorem 16.3. Let A be a Noetherian ring, M #0 an A-module, and
a,...,a,eA; set I =(a,,...,a,)A. Under the condition

(*) each of M, M/a,M,... . M/(a,,...,a,_,)M is I-adically separated,
if ay,...,a, is M-quasi-regular it is an M-sequence.

Remark. The hypothesis (*) holds in either of the following cases:

() M is finite and I < rad (A4);

(f) A is an N-graded ring, M an N-graded module, and each g, is
homogeneous of positive degree.

However, for a non-Noetherian ring 4 there are examples where the
theorem fails (Dieudonné [1]) even if A4 is local, M = A and I crad(A).
Proof. We prove first that a, is M-regular. If (eM with a, =0 then
by hypothesis ¢eIM. Then setting & =Y agn; we get 0= a,am;, so that
n;eIM. Proceeding in the same way we get ce( ) I*M = (0).

Now set M, = M/a, M, if we prove that a,,...,a, is an M ;-quasi-regular
sequence then the theorem follows by induction on n. (If M is [-adically
separated and M #0then M # IM.)So let (X ,,..., X,) bea homogeneous
polynomial of degree v with coefficients in M, such that f(a,,...,a,)=0.
If F(X,,...,X,)is a homogeneous polynomial of degree v with coefficients
in M which reduces to f modulo a;M, then F(a,,...,a,)ea;M. Set
F(as,...,a,) = a,w; suppose that wel'M, so that we can write @ = G;(a)
with G(X)eM[X,,...,X,] homogeneous of degree i. Then

F(ay,...,a,)=a,G{ay,...,a,),
and if i < v — 1 it follows that the coefficients of G, belong to IM, so that
wel'* ' M; repeating this argument we see that wel’ " *M. Setting i =v — 1
in the above formula, then since X, does not appear in F, we can
apply the definition of quasi-regular sequence to F(X,,...,X,)—
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X,G,-(Xy,.... X,) to deduce that the coefficients of F belong to IM.
Hence, the coefficients of f belong to IM;. =

Corollary. Let A be a Noetherian ring, M and A-module and a,,...,aq,
an M-sequence. If conditions () or (B) of the above remark hold then any
h permutation of a,,...,a, is again an M-sequence.
~ Here is an example where a permutation of an M-sequence fails to be
' an M-sequence: let k be a field, A =k[X, Y, Z} and set a; = X(Y — 1),
 ay=Y,ay=Z(Y —1). Then (a,, a5, a)4 = (X, Y, Z)A # A, and a,, a,, a,
+ is an A-sequence, whereas a,, as, a, is not.

The Koszul complex

Given a ring 4 and xy,...,x,eA, we define a complex K. as follows:
set Ko=A, and K, =0 if p is not in the range 0 <p<n. For I <p<n,

Z) with basis
{e;,..;,]1 <iy < <i,<n}. The differential d: K, —K,_, is defined

by setting

_iet K,=®Ae;, ; be the free A-module of rank <

11 1p Z (— 1 11,.,1,... p;

Afor p=1, set dfe;) = x;). One checks easily that dd = 0. This complex is
alled the Koszul complex, and written K.(x,,...,x,) (alternatively,
K.(x) or K., ,). For an A-module M we set K.(x,M)=K.(x) ®,M
'Moreover, for a complex C, of A-modules we set C.(x) =C.® K.(x). In
particular, for n =t the complex K.(x) is just

5004 "5 A0,

nd it is easy to check that K.(x,,...,x,) = K.(x;)® - ® K.(x,). Since the
nsor product of complexes satisfies L. @ M.~ M, ® L., the Koszul com-
lex is invariant (up to isomorphism) under permutation of x,, ..., x,. The
oszul complex K. (x, M) has homology groups H (K (x, M)), whxch we
b bbrev1ate to H(x, M). Quite generally we have

Ho(x, M)~ M/xM,

‘where xM stands for Y x;M, and

' H(x, M)~ {éeM|x;é =" =x,E=0].

“Theorem 164. Let C.bea complex of A-modules and xe A. Then we obtain
8N exact sequence of complexes

0-C.—C.(x) —C. >0,

E Where C! is the complex obtained by shifting the degrees in C. up by 1 (that
Coir= = C, and the differential of C; is that of C). The homology long
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exact sequence obtained from this is

(-7~ Ix

— H(C.) — Hp(C(x) — H - 1 (Cl)——
prl(c‘)__,...;
we have x-H (C (x))=0 for all p.
Proof. From the fact that K (x) = Ae, and Ky(x)= A and the definition
of tensor product of complexes, we can identify C,(x) with C,®C,_,, and
for (eC,, neC,_, we have
d(&,n) = (A& + (= 1)~ 'xn,dy).

The first assertion is clear from this. Moreover, H,(C))= H,_,(C)) is also
clear, and if neC, = C,_, satisfies dn = 0 then in C.(x) we have d(0,#) =
((—1)*"1xn,0), so that the long exact sequence has the form indicated
in the theorem. Finally, if d(£,#) =0 then dy =0 and d&=(— 1)’xy, so
that x-(&,n) = d(0,(— 1)’$)edC, . ,(x), and therefore x-H,(C(x))=0. u

Applying this theorem to K (x,M) and using the commutativity of
tensor product of complexes, we see that the ideal (x)=(x,...,x,)
generated by x annihilates the homology groups H (x, M):

(x) Hy(x,M)=0 forall p.

Theorem 16.5.

(i) Let A be a ring, M an A-module, and x4, ..., x, an M-sequence; then

H,(x,M)=0 for p>0 and Hqx,M)=M/xM.

(ii) Suppose that one of the following two conditions (a) or () holds:

(@) (4, m) is a local ring, x;,...,x,em and M is a finite 4-module;

(P) A is an N-graded ring, M is an N-graded A-module, and x,, ..., x, are
homogeneous elements of degree > 0.

Then the converse of (i) holds in the following strong form: if H(x, M)=0
and M #0 then x,,...,Xx, is an M-sequence.
Proof. We use induction on n.

(i) When n=1 we have H (x,M)={{ecM|x{=0}=0, so that
the assertion holds. When n> 1, for p> 1 the previous theorem provides
an exact sequence

O0=H,(xy,....%,— 1, M) — H (x4,...,x,, M)
—H,_(xy,....,x,—1,M)=0.
so that H,(xy,...,X,, M)=0. For p=1, setting M;= M/(x,...,x)M we
have an exact sequence
0-Hyx,M) —Hy(xy,....%x,-,M)=M,_,
£,

—M,_ -,

and since x, is M, _,-regular we have H(x, M) =0.
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(i) Assuming either (a) or (), M # 0 implics that M, #0for 1 <i<n. By
Wthesm and by the previous theorem,

Hy (%1 X1 M) =5 H (%1, %, M)— H(x, M) =0;

n—1s

ut quite generally H (x, M) is a finite A-module in case (x), or a N-graded
.module in case (f), so that by NAK, H,(x;,...,x,_;, M)=0. Thus by
duction x;,..., X, is an M-sequence. Now by the same exact sequence
in the case p=1 of (i), we see that x, is M, _,-regular, and therefore
15---> X, is an M-sequence. W

"~ Let A be a ring, M an A-module and I an ideal of A. if a,,...,q, are
fements of I, we say that they form a maximal M-sequence in I ifa,,...,a,
an M-sequence, and a,,...,a,, b is not an M-sequence for any bel. If
.,a,1s an M-sequence then a, M, (a,,a,)M,...,(a,,...,a,)M is strictly
creasing, so that the chain of ideals (a,) = (a;,a;)<... is also strict-
increasing. If 4 is Noetherian this cannot continue indefinitely,
that any M-sequence can be extended until we arrive at a maximal
-sequence.

emark. In Theorems 6-8 below, the hypothesis that M is a finite
-module can be weakened to the statement that M is a finite B-module
r a homomorphism A — B of Noetherian rings, as one sees on inspecting
e proof. The reason for this is that, if we set Assg(M)={P,,...,P,}
d P;n A =p,, then any ideal of 4 consisting entirely of zero-divisors of
is contained in ( Jp;, and therefore contained in one of the p,. Note
at according to [M], (9.A), we have Ass,(M)={p,,...,p,}.

heorem 16.6. Let A be a Noetherian ring, M a finite A-module and I
nideal of A; suppose that IM # M. For a given integer n > 0 the following
nditions are equivalent;

(1) Ext'(N,M)=0 for all i<n and for any finite A-module N with
upp(N) = V(I);

(2) Ext',(4/I, M)=0 for all i < n;

(2) Ext'(N,M) =0 for all i <n and for some finite A-module N with
Supp(N) = V(I);

(3) there exists an M-sequence of length n contained in I.

roof. (1)=(2)=(2') is obvious. For (2')=(3), if I consists only of zero-
sors of M then there exists an associated prime P of M containing /
his is where we need the finiteness of M). Hence there is an injective
ap A/P — M. Localising at P, we see that Hom,(k, Mp) # 0, where
=(A/P)p = Ap/PA,. Now PV (I) = Supp (N), so that N, # 0, and hence
Y NAK, Np/PNp= N ®,k #0. Thus N®k is a non-zero vector space
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over k, and Hom, (N ®k,k) #0. Putting together what we have said,
we can follow the composite N, — N®k —k—> Mp to show that
Hom, (Np, Mp) # 0. The left-hand side is equal to (Hom ((N, M))p, so that
Hom (N, M)#0. But this contradicts (2'). Hence [ contains ap
M -regular element f. By assumption, M/IM #0, and if n = 1 then we are
done. If n> 1 we set M, = M/fM, then from the exact sequence

0-M —f—> M—M,-0
we get Ext'(N, M)=0 for i<n—1, so that by induction I contains an
M -sequence f,,..., [,
For the proof of (3)=(1) we do not need to assume that A is Noetherian
or M finite. Let f,,...,f,el be an M-sequence; we have the exact sequence

0-M M M, -0,
and if n > 1 the inductive hypothesis Exty, (N, M,)=0for i < n— 1, so that

0-> Extiy(N, M) L5 Exti,(N, M)

is exact for i <n. But Ext’(N, M) is annihilated by elements of ann(N).
Since Supp(N)=V(ann(N))c V(I), we have [c./(ann(N)), and a
sufficiently large power of f, annihilates Ext’(N,M). Therefore,
Ext{(N,M)=0fori<n. m

Let M and I be as in the above theorem, and a,,...,a, an M-sequence
in I. For 1<i<n, set M;=M/(a,,...,a;)M; then it is easy to see
that Hom (A/I, M,) =~ Ext}{(A/I,M,_,) = - = Ext"(A4/I, M). Therefore,
if Ext"(A4/I,M)=0 we can find another element a,,,€l such that
dyg,-..,d,41 18 an M-sequence. Hence if a,, ..., a, Is a maximal M-sequence
in I we must have Ext’(A/I, M) # 0. We thus obtain the following theorem.

Theorem 16.7. Let A be a Noetherian ring, I an ideal of A and M a finite
A-module such that M # IM; then the length of a maximal M-sequence
in I is a well-determined integer n, and n is determined by
Exti(A/I,M)=0 for i<n and Ext}(A/I,M)+#0.
We write n = depth (I, M), and call n the I-depth of M. (If M = IM, the
I-depth is by convention c0.) Theorem 7 takes the form
depth (I, M) = inf {i| Ext’,(4/I, M) # 0}.
In particular for a Noetherian local ring (A, m, k), we call depth(m, M)
simply the depth of M, and write depth M or depth ,M:
depth M = inf {i| Ext!y(k, M) # 0}.
From Theorem 6 we see that if V(I)=V(I’) then depth(l,M)=

depth (I', M); this also follows easily from Theorem 1.
If ann (M) = a and we set A/a = A then M is also an A-module. Writing
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g or I for the image of an element a or an ideal I of A under the natural
‘homomorphism A — A we clearly have that ay,..., q, is an M-sequence
if and only if a,,...,a, is. Thus depth (I, M) =depth(I, M), and if we set
| +a=J, then since I =J we also have depth (I, M) = depth (J, M).

We can also prove that the length of a maximal M-sequence is
-well-determined by means of the Koszul complex.

Theorem 16.8. Let A be a Noetherian ring, I = (y4,...,y,) an ideal of A4,
‘and M a finite A-module such that M # IM. If we set

q=sup{i|H(y, M)+ 0},

‘then any maximal M-sequence in I has length n —g.

Proof. Letxy,...,x,be a maximal M-sequence in /; we argue by induction
on s. If s =0 then every element of [ is a zero-divisor of M, so that there
‘exists PeAss (M) containing I. By definition of Ass, there exists 0 # e M
such that P =ann(¢), and hence I =0. Thus {eH,(y, M) so that g =n,
“and the assertion holds in this case.

" If s>0 we set M, = M/x, M; then from the exact sequence

0-M-5M-—M,—>0

-and from the fact that IH,(y, M) =0 (by Theorem 4), it follows that

: 0—H(y, M)—H(y,M,)—H;_,(y, M)—-0

is exact for every i. Thus H,, ,(y,M;)#0and H;(y,M)=0fori>q+1;
but x,,...,x, is a maximal M, -sequence in I, so that by induction we
have g+ 1 =n—(s—1), and therefore g=n—s. »

In other words, depth(I, M) is the number of successive zero terms from
the left in the sequence

: H,(y.M),H,_,(y.M),...,Ho(y,M)=M/IM #0.

~ This fact is sometimes referred to as the ‘depth sensitivity’ of the Koszul
‘complex.

Corollary. In the situation of the theorem, y,...., y, is an M-sequence if

and only if depth (1, M) = n.

i

E;Proof. depth(I,M)=n<H,(y,M)=0 for all i > 0<>y is an M-sequence.

Zﬁ'Grade

A little before Auslander and Buchsbaum [2], Rees [5] introduced and

E?developed the theory of another notion related to regular sequences, that of
grade. Let A be a Noetherian ring and M # 0 a finite A-module. Then Rees
made the definition

grade M = inf {i| Ext’,(M, A) #0}.




132 Regular sequences

For a proper ideal J of A we also call grade (4/J) the grade of the ideal
J, and write grade J. If we set a =ann (M) then since Supp(M)= V(a),
Theorem 6 gives grade M = depth(a, A). Moreover, if g=gradeM then
Ext%(M, A) #0, so that
grade M < projdim M.

If I is an ideal then gradel(= grade(A/I))=depth(l, 4) is the length
of a maximal A-sequence in I, but in general if a,,...,a, is an A-sequence
then one seces easily from Theorem 13.5 that ht(a,,...,a,)=r. Thus if
d,...,a, is a maximal 4-sequence in I, we have r =ht(a,,...,a,) <htl.
Hence for an ideal I we have gradeI < htl.

Theorem 16.9. Let A be a Noetherian ring, and M, N finite A-modules;
suppose M #0, grade M = k and projdim N =/ < k. Then
Ext, (M,N)=0 for i<k-—1L
Proof. We use induction on I If I =0 then N is a direct summand of some
free module A", so that we need only say what happens for N = A, but
then the assertion is just the definition of grade. If >0 we choose an
exact sequence
0-N,—L,—N->0
with Ly a finite free module; then projdim N, = ! — 1, so that by induction
Exty(M,Ly)=0 for i<k and
Ext/'(M,N)=0 for i<k—1
the assertion follows from this. m

Exercises to §16. Prove the following propositions.

16.1. Let (4,m) be a Noetherian local ring, M #0 a finite A-module, and

ag,...,a,€m an M-sequence. Set M’ = M/(a,,...,a)M. Then
dimM =dimM —r.

16.2. Let A be a Noetherian ring, a and b ideals of A; then if grade a
> projdim A/b we have bia=b.

16.3. Let A be a Noetherian ring. A proper ideal  of A is called a perfect ideal if
grade I = proj dim 4/I. If I is a perfect ideal of grade k then all the prime
divisors of I have grade k.

Remark. Quite generally, we have grade I(= grade (4/1)) < proj dim A/I. If A is a
regular local ring and PeSpec A4 then as we will see in Theorems 19.1 and 19.2, P 1s
perfect< A/P is Cohen—Macaulay.

164. Let f:A—B be a flat ring homomorphism, M an A-module, and
a,,...,a,eA an M-sequence; if (M/a,,....a,)M)®B #0 then
flay),....f(a,) is an M ® B-sequence.

16.5. Let A be a Noetherian local ring, M a finite A-module, and P a prime ideal
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of A: show that depth(P, M) <depth, M, and construct an example
where the inequality is strict.

16.6. Let A be a ring and a,,...,a,64 an A-quasi-regular sequence. If A
contains a field k then a,,...,a, are algebraically independent over .

16.7. Let (4, m) and (B, n) be Noetherian local rings, and suppose that A = B,
nn A =m and that mB is an n-primary ideal. Then for a finite B-module
M we have

depthg M = depth , M.

16.8. Let Abearing, P,,..., P, primeideals, I anideal, and x an element of 4. If
xA+1¢& P u--UP, then there is a yel such that x + y¢P,u--UP,
(E. Davis).

16.9. Use the previous question to show the following: let A be a Noetherian
ring, and suppose that I # A is an ideal generated by n elements; then
grade I < n, and if grade I = n then I can be generated by an A4-sequence
([K], Th. 125).

16.10. Let A be a Noetherian ring, and suppose that P is a height r > 0 prime
ideal generated by r elements a,,...,4,.
(i) Suppose either that A is local, or that A is N-graded and the a; are
homogeneous of positive degree. Then A is an integral domain, and for
1 <i<r the ideal (a,,...,q;) is prime; hence a,,...,q, i5 an A-sequence.
(i) In general a,, ..., q, does not have to be an A-sequence, but P can in
any case be generated by an A-sequence (E. Davis).

17 Cohen—Macaulay rings

Theorem 17.1 (Ischebeck). Let (A, m) be a Noetherian local ring, M and N
non-zero finite A-modules, and suppose that depth M =k, dim N = r. Then
Exty(N,M)=0 for i<k-—r.
Proof. By induction on r; if r =0 then Supp(N) = {m} and the assertion
‘holds by Theorem 16.6. Suppose r > 0. By Theorem 6.4, there exists a
chain
N=Ny,>N; > >N,=(0) with N/N;  ~A/P;
of submodules N, where P,eSpecA. It is easy to see that if Ext)
(Nj/Nj+ 1, M) = 0 for each j then Ext\(N, M) =0, and since dim N;/N ;| <
dim N =r it is enough to prove that Ext\,(N,M)=0 for i<k —r in the
case N = A/P with PeSpecA and dim N =r. Since r>0 we can take
an element xem — P and get the exact sequence

0—>NL>N—>N’—>O,

where N’ = A/(P,x); then dimN'<r so that by induction we have
EXtQ(N/,M)zO for i<k—r+ 1. Thus for i<k —r we have an exact
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sequence
0— Exti,(N, M) —— Exti,(N, M) — Exti;*'(N', M) =0.
We have xem so that by NAK, Ext,(N,M)=0. m

Theorem 17.2. Let A be a Noetherian local ring, M a finite A-module,
and assume that PeAss(M); then dim(A/P) = depth M.

Proof. 1f PeAss(M) then Hom ,(A/P, M)#0, so that by the previous
theorem we cannot have dim A/P <depthM. =

Definition. Let (4,m,k) be a Noetherian local ring, and M a finite
A-module. We say that M is a Cohen—Macaulay module (abbreviated to
CM module) if M #0 and depth M =dim M, or if M =0. If 4 itself is a
CM module we say that A is a CM ring or a Macaulay ring.

Theorem 17.3. Let A be a Noetherian local ring and M a finite A~-module.
() If M is a CM module then for any PeAss(M) we have
dim(A4/P) = dim M = depth M. Hence M has no embedded associated
primes.
(i) If a,,...,a,em is an M-sequence and we set M' = M/(a,,...,q,} then
M is a CM module <= M'is a CM module

(i) If M is a CM module then M, is a CM module over A, for
every PeSpec 4, and if Mp #0 then
depth (P, M) = depth, Mp.
Proof. (1) Quite generally, we have
dim M =sup {dim A/P|PeAss M}
= inf {dim A/P|PeAss M } > depth M,
so that this is clear.

(ii) By definition depth M’ =depth M —r, and by Ex. 16.1, dimM'=
dim M —r, so that this is clear.

(iti) It is enough to consider the case Mp # 0, when P = ann(M). Then
quite generally we have dim M, > depth M, > depth(P, M), so that we need
only show that

dim M p = depth (P, M).
We prove this by induction on depth (P, M). If depth (P, M) = 0 then P is
contained in an associated prime of M, but in view of P >ann (M) and
the fact that by (i) all the associated primes of M are minimal, it follows
that P is itself an associated prime of M; therefore dimMp=0. If
depth (P, M) >0 then we can take an M-regular element a€P, and set
M’ = M/aM. Then

depth (P, M) = depth(P, M) — 1,



17 Cohen—Macaulay rings 135

”d M is a CM module with M} #0, so that by induction dim M} =
epth (P, M'). However, a is Mptegular as an clement of 4, and

M= Mp/aMp, so that using Ex. 16.] once more, we have dim Mp =

dim M — 1. Putting these together gives depth(P, M) =dimM,. =

‘i‘heorem 17.4. Let (A, m) be a CM local ring.

¥ (i) For a proper ideal I of A we have

: htI =depth(l, A)=gradel, and htI+ dim A/I = dim A.

(i) A is catenary.

- (iii) For any sequence a,,...,a,em the following four conditions are
@quivalent:

(1) ay,...,a, is an A-sequence;

@) ht(ay,...,a)=ifor 1<i<rn

(3) ht(ay,....a)=r,

@) ay,...,a, is part of a system of parameters of A.

Proof. (iii) The implication (1)=>(2) follows from Theorem 13.5, together
ith the fact that from the definition of A-sequence we have 0 < ht(a,) <
tla,,a;) <.

' (2)=(3) is trivial.

: (3)=(4) If dim A4 = r this is obvious; if dim 4 > r then m is not a minimat
prime divisor of (ay,...,q,), so that we can choose 4, , ;€m not contained
§ any minimal prime divisor of (a,, .. .,a,),and then ht(a,,...,a,, ) =r + 1.
Proceeding in the same way we arrive at a system of parameters of A.
Jp to now we have not used the CM assumption.)

- (4)=(1) It is enough to show that any system of parameters x,..., X,
ith n=dim A) is an A-sequence. If PeAss(A) then by Theorem 3, (i),
«lim A/P =n, so that x,¢P. Thus x, is A-regular. Therefore if we set
§ A4 =A/x, 4 we have by the previous theorem that A’ is an (n—1)-
ensional CM ring, and the images of x,,...,x, form a system of
'parameters of A’. Thus by induction on n we see that x,,...,x, is an
4-sequence.

() If htI = r then we can take a,,...,a,€l such that ht(a,,...,q;) =i for
Ki<r. Thus by (iii), a,,...,q, is an A-sequence. Thus r<gradel.
onversely if b,,...,b,el is an A-sequence then ht(b,,...,b)=s <htl,
And hence r > grade I, so that equality must hold. For the second equality,
etting S be the set of minimal prime divisors of I, we have

htI =inf{htP|PeS}

and dim (A/I) = sup {dim A/P|PeS},

nd so it is enough to show that ht P =dim 4 — dim 4/P for every PeS.
t ht P = dim Ap = r and dim A = n. By Theorem 3, (iii), 4, is a CM ring
band r = depth(P, A). Now if we take an A-sequence aj,...,qa,€P then
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by Theorem 3,(ii), A/(ay, ...,a,) is an (n — r)-dimensional CM ring, and from
the fact that ht(a,,...,a)=r=htP we see that P is a minimal prime
divisor of (ay,...,a,); thus by Theorem 3, (i), dim A/P =dim A/(a,,...,a,) =
n—r.

(ii) Let P> Q be prime ideals of 4. Then since 4p is a CM ring, (j)
above gives dim A, = htQA, + dim Ap/QAp; in other words htP — htQ =
ht(P/Q). =

If one system of parameters of a Noetherian local ring 4 is an A-sequence
then depth 4 = dim A, so that 4 is a CM ring, and therefore, by the above
theorem, every system of parameters of A is an A-sequence.

Theorem 17.5. Let A be a Noetherian local ring and 4 its completion;
then

(i) depth A = depth 4;

(ii) 4 is CM <A is CM.
Proof. (i) This comes for example from the fact that Ext,(A/m, A)Q@ A =
Exti(A/mA,A) for all i (i) follows from (i) and the fact that
dim A = dim A.

Definition. A proper ideal I in a Noetherian ring A is said to be unmixed
if the heights of its prime divisors are all equal. We say that the unmixedness
theorem holds for A if for every r = 0, every height r ideal I of A generated
by r elements is unmixed. This includes as the case r =0 the statement
that (0) is unmixed. By Theorem 13.5, if I is an ideal satisfying the
hypotheses of this proposition, then all the minimal prime divisors of {
have height r, so that to say that [ is unmixed is to say that ! does not
have embedded prime divisors.

A Noetherian ring A is said to be a CM ring if 4, is a CM local
ring for every maximal ideal m of A. By Theorem 3, (iii), a localisation
S 1A of a CM ring A is again CM.

Theorem 17.6. A necessary and sufficient condition for a Noetherian ring
A to be a CM ring is that the unmixedness theorem holds for A.

Proof. First suppose that 4 is a CM ring and that I =(ay,...,q,) is an
ideal of A with ht4 =r. We assume that P is an embedded prime divisor
of I and derive a contradiction. Localising at P we can assume that A is
a CM local ring; then by Theorem 4, (iii), a,,...,a, is an A-sequence, and
hence A/I is also a CM local ring. But then I does not have embedded
prime divisors, and this is a contradiction. Next we suppose that the
unmixedness theorem holds for A. If PeSpec A with htP =r then we can
choose a,,...,a,eP such that

ht(a,,...,a)=1i for 1<i<gr
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" Then by the unmixedness theorem, all the prime divisors of (a,,...,a;)
have height i, and therefore do not contain a;,,. Hence g;,, is an
Alay,.--s a))-regular element; in other words, a,,...,q, is an A-sequence.
Therefore depth A, = r = dim A, so that A, is a CM local ring; P was
any element of Spec 4, so that 4 is a CM ring. =

The unmixedness theorem for polynomial rings over a field was a
prilliant early result of Macaulay in 1916; for regular local rings, the
unmixedness theorem was proved by L. S. Cohen [1] in 1946. This explains
the term Cohen—Macaulay. Having come this far, we are now in a position
to give easy proofs of these two theorems.

Theorem 17.7. 1f A is a CM ring then so is A[X,,...,X,].
Proof. We need only consider the case n=1. Set B= A[ X] and let P be
a maximal ideal of B. Set PnA=m; then B, is also a localisation of
A [X], so that replacing A by A, we have a local CM ring
A with maximal ideal m, and we need only prove that B, is CM. Setting
‘Afm =k we get

B/mB = k[ X],
so that P/mB is a principal ideal of k[ X] generated by an irreducible
* monic polynomial ¢(X). If we let f(X)e A[X] be a monic polynomial of
.. A[X] which reduces to ¢(X) modulo mB then P =(m, f). We choose a
system of parameters a,,...,q, for 4, so that a,,...,a,, f is a system of
- parameters of B,. Since B is flat over A the A-sequence a;,...,a, is also
+ a B-sequence. We set A/(a,...,a,) = A’; then the image of f in A'[X] is
.- amonic polynomial, and therefore A'[ X]-regular, so that a,,...,a,, f is
- a B-sequence, and
: depth B, = depth (P, B) = n + 1 =dim B,.
- Therefore Bpis a CM ring. =

Remark. 1f A is a CM local ring, then a similar (if anything, rather easier)
method can be used to prove that A[ X ] is also CM. The statement also
holds for a non-local CM ring, but the proof is a little more complicated,
and we leave it to §23.

Theorem 17.8 A regular local ring is a CM ring.

Proof. Let (4, m) be an n-dimensional regular local ring, and x,,...,x, a
regular system of parameters. By Theorems 14.2 and 14.3,(x,), (x,X3), ...,
(xy,...,x,) is a strictly increasing chain of prime ideals; therefore x,,...,x,
is an A-sequence. m

Theorem 17.9. Any quotient of a CM ring is universally catenary.
Proof. Clear from Theorems 7 and 4. m
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Theorem 17.10 A necessary and sufficient condition for a Noetherian loca]
ring (4, m, k) to be a regular ring is that gr, (A) is isomorphic as a graded k-
algebra to a polynomial ring over k.

Proof. If A is regular, let x,,..., x, be a regular system of parameters, that
is a minimal basis of m; then x,...,x, iS an A-sequence, so that by
Theorem 16.2 (see also Theorem 144 for another proof) gr (4)x~
k[Xy,...,X,]. Conversely, if gr (4)~k[X,,...,X,], then comparing
the homogeneous components of degree 1, we see that m/m? ~kX,
+ -+ kX,. On the other hand, the homogeneous component of degree n

. +r—1
of k[X,,...,X,] is a vector space over k of dimension <n rl >,
,—_

so that the Samuel function is
n i —_
Lalr) =+ = (’*’ 1>=<”+r>,
i= r—1 r
and dim 4 =r. Therefore A4 is regular. =
We can also characterise CM local rings in terms of properties of
multiplicities. Let A be a Noetherian local ring. An ideal of 4 is said to
be a parameter ideal if it can be generated by a system of parameters. By
Theorem 14.10, if q is a parameter ideal then I(4/q) > e(q). As we are about
to see, equality here is characteristic of CM rings.

Theorem 17.11. The following three conditions on a Noetherian local ring
(4, m) are equivalent:

(1) A is a CM ring;

(2) {A/q) = e(q) for any parameter ideal q of 4;

(3) I(A/q) = e(q) for some parameter ideal q of A.
Proof. ()=>(2). If x;,...,x, is a system of parameters of A and g=
(x1,...,x5) then by Theorem 16.2, gr(A4) ~(4/q)[X,,....X ], so that

d
as in the proof of the previous theorem, x§(n)= l(A/q)~<n * ) so that

d
e(a) = {A/a).

(2)=(3) is obvious.

(3)=(1) Suppose that q=(x,,...,x,) is a parameter ideal satisfying
e(q) = l(A4/q). We set B=(A/q)[X,,...,X ;]; then there is a homogeneous
ideal b of B such that gr (4) ~ B/b. We write @5(n) and ¢, (n) for the Hilbert
polynomials of B and b (see §13); then

n+d—1
pgn) = l(A/q)( -1 >,
and for n>0 we have l(q"/q"* ') = @g(n) — @,(n). The left-hand side is a
polynomial in n of degreed — 1, and the coefficient of n*~ ! is e(q)/(d — 1)!. BY



18 Gorenstein rings 139

ihypothesis e(q) = l(A/q), so that ¢,(n) must be a polynomial in n of degree at
most d — 2. However, if b # (0) then we can take a non-zero homogeneous
jement f(X)eb. If m"cq and we set m/q="h then in B we have
" =(0), and therefore replacing f by the product of f with a suitable
“element of /, we can assume that f #0 but fitf =0. Then
bo fB~(A4/m)[X,,....X,],
n—p+d—1
d—1

omogeneous component of degree n—p in (4/m)[X,,...,X,]. This
gontradicts deg ¢, < d — 1. Hence b =(0), and

gr(A)=B=(A/q)[X,,...,X,],
o that by Theorem 16.3, {x,,...,x,} is an A-sequence. Therefore 4 isa CM
ting. W

gnd therefore if deg f = p then ¢(n) = < ), the length of the

Exercises to §17. Prove the following propositions.

17.1. (a) A zero-dimensional Noetherian ring is a CM ring.
(b) A one-dimensional ring is CM provided that it is reduced (=no
nilpotent elements); also, construct an example of a one-dimensional ring
which is not CM.

17.2. Let k be a field, x, y indeterminates over k, and set A4 = k[x>, x?y, xy?, y*]

' < k[x,y] and P =(x3, x2y,xy2, y*)A. Is R= A4, a CM ring? How about
k[x*, x3y, xy>, y*1?

17.3. A two-dimensional normal ring is CM.

© 174. Let Abea CMring, a,,...,a,an A-sequence, and set J = (a4,...,a,). Then

for every integer v the ring A/J" is CM, and therefore J® is unmixed.

. 17.5. Let A be a Noetherian local ring and PeSpec A. Then

(i) depth A < depth (P, A) + dim 4/P;
(i) call dimA—depth4 the codepth of 4. Then codepthA >
codepth A4,.

17.6. Let A be a Noetherian ring, PeSpec A and set G = grp(4). If G is an
integral domain then P"= P™ for all n > 0. (This observation is due to
Robbiano. One sees from it that if P is a prime ideal generated by an A-
sequernce then P" = P®)

18 Gorenstein rings

emima [. Let A be a ring, M an A-module, and n >0 a given integer.
' Then
injdim M < n<eExty 1 (4/1, M) =0 for all ideals 1.
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If A is Noetherian, then we can replace “for all ideals’ by “for all prime
ideals’ in the right-hand condition.

Proof. (=) This is clear on calculating the Ext by an injective resolution
of M.

(«=) If n=0 then from the exact sequence 0> — A — A4/ >0 and
from the fact that Exti(4/I,M)=0 we get that Hom(4, M)—
Hom(Il, M)—0 is exact. Since this holds for every I, Theorem B3 of
Appendix B implies that M is injective. Suppose then that n> 0.

There exists an exact sequence

O~>M-—>QO*—>Q1 ——»---—»Q"_l —C-0,

with each Q' injective. (We can obtain this by taking an injective resolution
of M up to Q"' and setting C for the cokernel of Q" 2 — Q" 1) One
sees easily that Ext%*!(4/I, M) ~ Ext (4/I, C), so that by the argument
used in the n =0 case, C is injective, and so injdim M < n.

If A is Noetherian then by Theorem 6.4, any finite A-module N has a
chain N=Ny> N, > >N, =0 of submodules such that N;/N;,  ~
A/P; with P;eSpecA. Using this, if Extl(A/P, M) =0 for all prime ideals
P then we also have Ext{, (N, M) =0 for all finite A-modules N. Now we
just have to apply this withi=n+1and N=A4/I. m

Lemma 2. Let A be a ring, M and N two A-modules, and xeA; suppose
that x is both A-regular and M-regular, and that xN = 0. Set B = A/xA and
M = M/xM. Then
(i) Hom ,(N, M) =0, and Ext’y* (N, M) ~ Ext}(N, M) for all n > 0;

(i) Bxt",(M, N) ~ Ext’(M, N) for all n >0;

(i1) TorA(M, N) ~Tor2(M, N) for ail n > 0.
Proof. (i) The first formula is obvious. For the second, set T"(N)=
Ext%,"'(N, M), and view T" as a contravariant functor from the category
of B-modules to that of Abelian groups. Then first of all, the exact sequence

0-M-"5M—M-0

gives TO°(N)=Hom (N, M)=Homy(N,M). Moreover, since x i
A-regular we have projdim,B =1, and therefore T"(B)=0 for n>0,
so that T"(L)=0 for n >0 and every projective B-module L. Finally, for
any short exact sequence 0— N' — N —s N” —0 of B-modules, there is
a long exact sequence

0 — TOUN") — TON) — T°(N")

— THN") — THN) — THN) - -
This proves that T" is the derived functor of Homg(—, M), and therefore
coincides with Exti(—, M).

(i) We first prove TordM,B)=0 for n>0. For n>1 this follows
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< from projdim,B=1For n=1, consider the long exact sequence
0 Tor{(M, B)——»M—X+M — M -0 associated with the short

exact sequence 0— A4 4 -—B—0. Since x is M-regular we have
= Tord(M, B)=0.

Now let L,—> M —0 be a free resolution of the A-module M. Then
1.8,B— M®,B—0 is exact by what we have just proved, so that
L.® B s a free resolution of the B-module M ® B = M. Then Ext"(M, N)
= H'(Hom (L., N)) = H"(Hom(L, ®,B, N)) = Ext%(M, N) by Formula 9
of Appendix A.

.. (iii) Using the same notation as above, we have Tor;(M,N)=
H (L, ®N)= H,((L.®4B)®sN)=Tor}(M,N). m

‘Lemma 3. Let (A, m, k)be a Noetherian local ring, M a finite A-module, and
PeSpec 4; suppose that ht (m/P)= 1. Then

Ext }(k, M) = 0=Ext\(4/P,M)=0.

Proof. Choose xem — P; then 0—A/P —— A/P — A[(P + Ax)>0 is
an exact sequence, and P+ Ax is an m-primary ideal, so that if we let
N = A/(P + Ax), there exists a chain of submodules of N

: N=Ny>N;>>N,=0 suchthat N/N,  ~k

ence from Ext’}(k, M) =0 we get Ext,"}(4/(P + Ax), M) =0, and
Exti,(A/P, M)~ Exti,(A/P, M) -0,
exact, so that by NAK Ext'(4/P,M)=0. m

mma 4. Let (A, m, k) be a Noetherian local ring, M a finite A-module, and
€Spec 4; suppose that ht(m/P)=d. Then

Extit4(k, M) = 0= Ext’, (k(P), M) = 0.
“Proof. Let m=P,>P, > -->P,=P, with P,eSpec 4 and ht(P;/P;,)
1. Then by Lemma 3,
Extir4=Y(4/P,, M) =0,
d localising at P, we get
Extidl =1 (k(P,), Mp,)=0.
@roceeding in the same way gives the result. m

heorem 18.1. Let (4, m, k) be an n-dimensional Noetherian local ring.
hen the following conditions are equivalent:

(1) injdim 4 < oo;

(I') injdim 4 = n;

(2) Exti,(k, A)=0 for i#n and ~k for i =n;
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(3) Exti(k, 4) =0 for some i > n;

(4) Exti(k, A)=0for i<n and ~k for i=n;

{(4) A is a CM ring and Ext(k, A) ~k;

(5) A is a CM ring, and every parameter ideal of A is irreducible;

(5') A is a CM ring and there exists an irreducible parameter ideal.
Recall that an ideal I is irreducible if I =JnJ' implies either / =J or
I=J (see §6).

Definition. A Noetherian local ring for which the above equivalent
conditions hold is said to be Gorenstein.

Proof of (1)==(1"). Set injdim A =r. If P is a minimal prime ideal of 4
such that ht(m/P)=dimA=n then PApeAss(A4p), so that
Hom(k(P), Ap) #0; hence, by Lemma 4, Ext%(k, A) #0, therefore r>n.
If r = 0 this means that n =0, and we are done. If r > 0, set Ext’,( —, A) =
T; then this is a right-exact contravariant functor, and by Lemma 1,
there is a prime ideal P such that T(A4/P) # 0. Now if P # m and we take
xem — P, the exact sequence

0— A/P —> A/P

leads to an exact sequence

T(4/P)— T(A/P)>0;
but then by NAK, T(A4/P) = 0, which is a contradiction. Thus P = m, and

so T(k)#0. We have m # Ass(A), since otherwise there would exist an
exact sequence 0 —k — A4, and hence an cxact scquence
T(A} = Ext,(A, 4) =0 —> T(k)—0,
which is a contradiction. Hence m contains an A-regular element x. If we set
B=A/xA then by Lemma 2, Exty(N,B)=Ext\ (N, A) for every B-
module N, so that injdim B=r — 1. By induction on r we have r — 1=
dimB=n—1, and hence r =n.
Proof of (1'Y=(2). When n =0 we have meAss (A), so there exists an exact
sequence 0 -k —> A, and since injdim A = 0,
A=Hom(A4,A) — Hom {(k, 4)—0
is exact. Therefore Hom(k,4) is generated by one eclement. Bl{t
Hom (k, A) # 0, so that we must have Hom (k, A) ~ k. By assumption, 4 18
an injective module, so that Exti(k, 4) = 0 for i > 0; thus we are done In the
case n =0. If n >0 then, as we have seen above, m contains an A-regulat
element x, and if we set B = A/x A then dim B = injdim B = n — 1, so that by
Lemma 2 and induction on n we have
. . 0 if O<i#n
i — i—1 —
Ext}(k, A) = Exty '(k, B) {k it i=n,

Hom ,(k, A) =0.
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@=0)is trivial.

oof of (3)=(1). We use induction on n. Assume that for some i >n we
e Extl, (k, A) = 0.1f n = O then m is the unique prime ideal of 4, so that by
ma 1, injdimA<i<oo. If n>0 let P be a prime ideal distinct
»m m and set d =ht(m/P) and B= A4;; then by Lemma 4 we have
ti4(k(P), B) = 0. Moreover, dim B < n—d < i —d, so that by induction
i dim B < . Thus for any finite A-module M we have

(Exti (M, A))p = Ext5(M,,B)=0

wee i>n>dim B =injdim B). Therefore, setting T(M)= Ext!(M, A)
get Supp(T(M))< {m}, and since T(M) is a finite A-module,
T(M)) < co. Using this, we now prove that T(4/P) =0 for every prime
eal P. If T(A/P) # 0 for some P, choose a maximal P with this property. By
sumption T(k) =0, so that P # m, so that we can take xem — P and form
& exact sequence

0—A/P - A/P — AJ(P + Ax)—0.

hen write AP+ Ax)=M,>M, > >M;=0 with M/M,,, > A/P;;
ch P; is strictly bigger than P, so that T(A/(P + Ax)) = 0. Therefore

" 0-T(A/P)—> T(A/P)
Lfexact, so that multiplication by x in T(A/P) is injective; but since
A/P)) < v, injective implies surjective. Hence by NAK, T(A/P)=
hich is contradiction. Therefore T(A/P) = 0 for every PeSpec 4, so that
y Lemma 1, injdim A <.
: fSo far we have proved that (1), (1'), (2) and (3) are equivalent. Now we
ove the equivalence of (2), (4), (4'), (5) and (5').
(2)=>(4) is obvious. (4)<>(4’) comes at once from the fact that 4 is CM if
pd only if Exti(k,4)=0 for all i<n (the implication (2)<(3) of
orem 16.6).
f of (4)=(5). A system of parameters x,,...,x,in a CM ring 4 is an
quence, so that setting B = A4/ } x; A, we have

Homg(k, B) ~ Ext%(k, A) ~ k
B is an Artinian ring, and any minimal non-zero ideal of B is
dmorphic to k, so that the above formula says that B has just one such
imal ideal, say I,. If I, and I » are any non-zero ideals of B then both of
1 must contain I,, so that I, NI, #(0). Lifting this up to 4, this means
(x1,...,x,) is an irreducible ideal.
)=(5) is obvious.
of of (5')=>(2). 1f Ais CM we already have Exti,(k, A) = O fori < n.1f q is
freducible parameter ideal and we set B = A/q then, in the same way as
Jove

>

Ext’;*i(k, A) ~ Bxti(k, B),
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so that it is enough to prove that in an Artinian ring B, (0) is irreducible
implies that

Homyk,B)~k and Extyk B)=0 for i>0.
The statement for Hom is easy: first of all, B is Artinian, so that
Homy(k, B) # 0; for non-zero f, geHomy(k, B) we must have f(k)= g(k),
since otherwise f(k)g(k) = (0), which contradicts the irreducibility of (0),
Hence f(1) = g(«) for some ack, and f = ag, so that Homg(k, B) ~ k.

Now consider the Exty(k, B). Choose a chain of ideals (0)=N,c

N, < =N, = Bsuch that N/N,_, ~k, and consider the exact sequences

0—-N,—N,— k-0

0-N,—N;—k->0

0->N,_ —B-—k-0.
From the long exact sequence

0 — Homy(k, B) —> Homg(N,, ,, B) — Hom(N., B) —

Exti(k, By —---

and an easy induction (using N, ~k and Homg(k, B) ~ k), we get that
l(Homg(N;, B)) <i, with equality holding if and only if ,...,8,_ are all
zero. However,

I(Homg(N,, B)) = (Homg(B, B)) = [(B) =,
so that we must have §; =--=4,_; =0. Then from

0->N, ,—B-—k-0
we get the exact sequence

0— Ext(k, B)— Ext}(B, B) = 0,
and therefore Exti(k, B)=0. Now from Lemma 1, B is an injective B-
module, so that Exti(k, B)=0forall i>0. m

Lemma 5. Let A be a Noetherian ring, S — A a multiplicative set, and I an
injective A-module; then I is an injective Ag-module.
Proof. Every ideal of Ay is the localisation ag of an ideal a of 4. From
0—>a—>A4 we get the exact sequence Hom (4, I)— Hom,(a, D)0,
and, since a is finitely generated

Hom ,(As, Is) — Hom (a5, I5) -0

is exact. This proves that I is an injective Ag-module.

Theorem 18.2. 1f A is a Gorenstein local ring and PeSpec A then 4, is als°

Gorenstein.
Proof. If 0-4 -0 —» ' —»-—-—5 "0 is an injective reso
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fution of A then

0—-Ap ——»(IO)P-—>-~--—>(I")P—>O
:s an injective resolution of Ap, so that injdimAp<cc. m

efinition. A Noetherian ring 4 is Gorenstein if its localisation at every
aximal ideal is a Gorenstein local ring. (By the previous theorem, it then
liows that A, is Gorenstein for every PeSpec A.)

heorem 18.3. Let A be a Noetherian local ring and 4 its completion.
en A is Gorenstein <4 is Gorenstein.

roof. We have dim A =dim A, and since 4 is faithfully flat over A,
xti (k, A)® 44 = Extiy(k, 4), so that we only need to use condition (3)
"“Theorem 1. m

Closely related to the theory of Gorenstein rings is Matlis” theory
injective modules over Noetherian rings. We now discuss the main
esults of Matlis [1].

Let A be a Noetherian ring, and E an injective A-module. If E is a
bmodule of an A-module M then since we can extend the identity map
— E to a linear map f:M — E, we have M = E®F (with F = Kerf).
y that an A-module N is indecomposable if N cannot be written as a
rect sum of two submodules. We write E ((N) or E(N) for the injective
ull of an A-module E (see Appendix B).

i Theorem 18.4. Let A be a Noetherian ring and P, QeSpec A.
b (i) E(A/P) is indecomposable.
(ii) Any indecomposable injective A-module is of the form E(A4/P) for
me PeSpec 4.
(iii) If xe A — P, multiplication by x induces an automorphism of E(A/P).
(V) P # Q= E(4/P) % E(4/Q).
(v) For any ¢€E(A/P) there exists a positive integer v (depending on )
ch that P*¢ =0.
(vi) If Q = P then E(A/Q) is an Ap-module, and is an injective hull of
[Q)p = Ap/Q Ap, that is

E(4/Q)= EA,,(AP/QAP)~
#roof. (i) If I, and I, are non-zero ideals of A/P then 0 1,1, <1, n1,.
Now E(A/P) is an essential extension of A/P (see Appendix B), so that for
Any two non-zero submodules N, N, of E(A/P) we have N;n(A/P) #0,s0
at
: N,nN,o>(N;nA/P)n(N,nA/P}#0.
'+ (i) Let N #0 be an indecomposable injective A-module and choose
€Ass(N). Then A/P can be embedded into N, and so E(A/P) can also; but
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an injective submodule is always a direct summand, and since N jg
indecomposable, N = E(A/P).

(iii) Write ¢ for multiplication by x in E(A/P); then Ker(p)n(4/P)=0,so
that Ker (¢) = 0, and Im ¢ is isomorphic to E(4/P). Hence Im ¢ is injective,
and is therefore a direct summand of E(A/P), so that by (i), Im ¢ = E(A/P),

(iv) If P¢£Q and xeP — Q then multiplication by x is injective in
E(A/Q) but not in E(A/P).

(v) By the proof of (ii) together with (iv), Ass (E(A/P)) = {P}, so that the
submodule A¢~ A/ann(&) also has Ass(A&)={P}. Hence ann(¢) is a
P-primary ideal.

(vi) By (iii), we can view E(A/Q) as an Ap-module; hence it contains
(A/Q)p. Since E(4/Q) is an essential extension of A/Q and 4/Q = (A/Q), =
E(A/Q),itis also an essential extension of (4/Q),. For Ap-modules M and N,
any A-linear map M — N is also Ap-linear, and of course conversely,
so that for an Ap-module, being injective as an Ap-module is the same as
being injective as an A-module. Thus E(4/Q) is an injective hull of the
Ap-module (4/Q)p. =

Example 1.1f A is an integral domain and K its field of fractions, K = E(4)
(prove this !}.

Example 2. If Ais a DVR with uniformising element x and field of fractions
K, and k= A/xA, then E(k)= K/A. Indeed, if I is a non-zero ideal of 4
we can write [ =x"A, and if f:I — K/A is a given map, let f(x"})=«a
mod A for some xeK; then f can be extended to a map f:4—K/A
by setting f(1)=(x/x")modA. Therefore K/A is injective. We have
(x"'A)/A ~ A/xA = k,and it is easy to see that K/A is an essential extension
of x *A4/A. Thus K/A can be thought of as E(k).

Theorem 18.5. We consider modules over a Noetherian ring A.
(i) A direct sum of any number of injective modules is injective.
(ii) Every injective module is a direct sum of indecomposable injective
modules.
(iii) The direct sum decomposition in (ii) is unique, in the sense that if
M = ® M, (with indecomposable M)
then for any PeSpec A4, the sum M(P) of all the M isomorphic to E(A/P)
depends only on M and P, and not on the decomposition M = @ M;.
Moreover, the number of M; isomorphic to E(A/P) is equal to
dim,pyHom ,_(«(P), Mp), (Where k(P) = Ap/PAp),
so that this also is independent of the decomposition.
Proof. (i) Let M, for A€ A be injective modules. It is enough to prove that
for an ideal I of A, any linear map¢:] — @ M, can be extended to a linear
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map from the whole of A. Since I is finitely generated, ¢(I) is contained
in a direct sum of a finite number of the M ;. If o(I)c M, ®--@® M, and
we write ¢;(a) for the component of ¢(a) in M, then ¢;:1 — M, extends
to ¥i:A— M, Defining y:4-— @M, by y()=y,(1)++y,(1)
extends ¢ to A.

(i) Say that a family # = {E,} of indecomposable injective submodules
of M is free if the sum in M of the E, is direct, that is if, for any finite
aumber E; ,..., E; of them,

E, n(E;,++E;)=0.
_Let M be the set of all free families #, ordered by inclusion. Then by
* Zorn’s lemma 9 has a maximal element, say % ,. Write N =3 . . E; then
“by (i), N is injective, hence a direct summand of M, and M =N@N". If
¢ N’ #0 then since it is a direct summand of M it must be injective, and
“for PeAss(N'), the proof of Theorem 4, (ii), shows that N’ contains a
“direct summand E’ isomorphic to E(4/P). Thus #,u {E'} is a free family,
~contradicting the maximality of #,. Hence N'=0 and M = N.
+ (i) If we can show that M(P) has the property that every submodule
: E of M isomorphic to E(A/P) is contained in M(P), then M(P) is the
submodule of M generated by all such E, and therefore is determined by
and P only. To prove this, take any £€E; we can write £ =&+ +
. with ;e M(P;), where P,,..., P, are distinct prime ideals and P = P,.
tting &, — & =n, and &, =y, for 2 <i<r we have 5, + - + 1, =0, with
1€M(Py)+ E and ;e M(P,) for i = 2. We need only prove that in this case
ch n; = 0. Suppose that P, is minimal among P,,..., P,; then for any m
we have (P,...P,_,)"¢ P,, so that taking ae(P,...P,_,)"— P, and m
large enough, we get ag, =--=an,_,; =0. Then also ay, =0, but
‘multiplication by a is an automorphism of M(P,), so that 7,=0. By
induction on r we get y; = 0 for all .
~ We now prove that if M(P)= M, ® & M, with M, ~ F(4/P) then

s = dim,p) Hom 4 (x(P), Mp).
(We are writing this as if s were finite, but, as one can see from the proof
below, the same works for any cardinal number.) By Theorem 4, (vi), both
sides of M(P)=M,®@®M, are Ap-modules, and M,;~ E(x(P)).
Moreover, by Theorem 4, (v), E(4/Q)p =0 if Q ¢ P, so that
Mp= @ M(Q)p = P M(Q).

Q=P Q<P

; _Hence we can replace 4 by A4,, and assume that A4 is a local ring with P
s maximal ideal; set k=x(P). If Q # P then any xeP —Q gives an
automorphism of M(Q), but x-k =0, so that Hom ,(k, M(Q)) = 0. Hence
] HOmA(k, M) =Hom 4(k, M(P)), so that there is no loss of generality in
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assuming that M = M(P). For any A-module N, we can ldentlf
Hom,(k, N) with the submodule {{eN|P¢ =0}, but since E(k) ig an
essential extension of k we must have dim, Hom ,(k, E(k)) = 1, 50 that if
M=M,®®M, with M; ~ E(k) then s = dim, Hom ,(k, M). wm

Theorem 18.6. Let (4, m, k) be a Noctherian local ring, and E = E (k) the
injective huli of k. For each A-module M set M' = Hom ,(M, E).

(i) If M is an A-module and 0 # xe M, then there exists pe M’ such thy¢
@(x) # 0. In other words the canonical map 6:M — M" defined by 6(x)(¢)
= p(x) for xe M and peM’ is injective.

(i) If M is an A-module of finite length, then [(M)=1(M') and the
canonical map M — M” is an isomorphism.

(iii) Let A be the completion of A4; then E is also an A-module, and
is an injective hull of k as 4-module.

(iv) Hom (E, E) = Hom(E,E) = A. In other words, each endomor.
phism of the A-module E is multiplication by a unique element of 4,

(v) E is Artinian as an A-module and also as an A-module. Assume
now that A4 is complete, and write .4 (resp. .o7) for the category of
Noetherian (respectively Artinian) A-modules. Then if MeA” we have
Mes/ and M ~M"; if Meo/ we have M'e A" and M ~ M".

Proof. (i) Let f:Ax—E be the composite of the canonical maps
Ax ~ A/ann(x), A/ann(x) — A/m = kand k — E. Then f(x) # 0.Since Eis
injective we can extend f to ¢:M —E.

(i) If I(M)=n < oo then M has a submodule M, of length n— 1, and
0-M,— M —k-0isexact,so that 0= k' — M' — M| -0 is exact.
However

k' =Hom (k, E) = Hom (k, k) ~ k,

so that by induction on n we get [(M)=n=I[(M’). The canonical map
M — M" is injective by (i), and [(M) = {(M’) = I[(M"), hence it must be an
isomorphism.

(iii) Each element of E is annihilated by some power of n1, so that the
canonical map E — E®,A is surjective. However, since A is faithfully
flat over A it is also injective, so that E ~ E®, A, and we can view E 3
an A-module. Let F be the injective hull of E as an A-module. Then F
is also the A-injective hull of k, so that every element of F is annihilated
by some power of mA. As an A-module F splits into a direct sum of E
and an A-module C. If xeC, and if m"Ax =0, then for each « *c A we
can find aeA such that a*=a modm’A and hence a*x=axeC.
Therefore € is an A-module. But F is indecomposable as an A-module.
Hence C=0and E=F.

(iv) For v>0 set E,={xeE|/m°x=0}. Then we have (A/m*) = /
Hom,,(A4/m", E)~ E,, and Hom 4 (E,, E,) = Hom((E, E) = A/m‘)/ =
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Ajm. Now E, cE;c and E= (J+E, by Theorem 4, (v), hence E=
@Ev- Thefefore Hom ,(E, E) = Hom,(im E,, E) = limHom,(E,, E) =
fim A/m’ = 4

“(v) If an A-module M is Artinian and xeM, then Ax ~ A/ann(x) is also
_Artinian and consequently m” < ann(x) for some v. Therefore M can be
viewed as an A-module, and its A-submodules are precisely its A-
submodules. It is also clear that if an A-module M is Artinian then we have
the same conclusion. Therefore to prove (v) we may assume that A is

complete.

If M is a submodule of E set M* = {ae AjaM = 0}. If I is an ideal of 4 set
I*={xeE|Ix=0}. Then clearly M** > M. If xeE—M there exist
pe(E/M") satislying @(xmod M)#0 by (i), and if we identify E =
Hom ((E, E) with A then (E/MY is identified with M*. Thus ¢(x mod M) =
ax for some aeM”, and x¢M*"'. Therefore M = M. Similarly, if
acA—1I then there exists @e(A/I) such that ¢(amodlI)+#0, and
(4/1y is identified with the submodule I* of E= A’ Thus, setting x =
¢(1mod I) we have xel* and ax = p(amod I) # 0. This proves a¢l**, so
that I = I**. Thus M —— M* is an order-reversing bijection from the set of
submodules of E onto the set of ideals of A. Since A4 is Noetherian, it follows
that E is Artinian. By Theorem 3.1 finite direct sums E" of E are also
Artinian for all n > 0.

If Me A" then there is a surjection A" — M for some n, and so there
is an injection M’ — (A" = E". Hence M’ is Artinian. On the other
hand, if Mes/ there is an injection M — E" for some n. This can be
seen as follows: consider all linear maps M — E", where n is not fixed,
and take one ¢:M — E" whose kernel is minimal among the kernels of
those maps. Then, using (i) we can easily see that Ker(p) = 0. Now, from
0— M — E" we have (E") = A" — M’ — 0 exact, hence M’e.#". Now the
assertion M ~ M” for Me.V" or .« can easily be checked using (iv) if M = 4
or E, and the general case follows from this and from (i). W

Lemma 6. Let A be a Noetherian ring, S « A a multiplicative set, M an A4-
module and N = M a submodule. Assume that M is an essential extension
of N; then M is an essential extension of Nj.

Proof. For £eM we write &g = ¢/1eMg; then any element of M can be
written u- g (with u a unit of A and Ee M), so that it is enough to show that
for any non-zero ¢ we have Nyn Ay & #0. Suppose that ann (t,¢) is a
maximal element of the set of ideals {ann (t£)|teS}; then if we set 7 =t &, we
have ¢g=151y, and hence n#0. Now let b={aedlaneN}; by
assumption,

byp=AnnN #£0.
Suppose that b=(by,....,b); if byng=--=b,ng=0 then there is a teS
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such that th;y =0 for all i. Then tby =0, but by choice of » we have
ann(y) = ann(tn), so that by =0, which is a contradiction. Thus b, # (
for some i, and

binse AsnsnNg= Aglsn Ng,
as required. m

By Lemmas 5 and 6, if M is an injective hull of N then the 4g-module

M;s is an injective hull of Ng. Hence if 0-M-—1°—I' - j5
a minimal injective resolution of an A-module M, then 0 - Mg — 19—
I§— -+ is a minimal injective resolution of the Ag-module M. The
I' are determined uniquely up to isomorphism by M. We can therefore
define u;(P, M) to be the number of summands isomorphic to E(4/P)
appearing in a decomposition of I' as a direct sum of indecomposable
modules. We can write symbolically

= @ w(P,M)E(A/P).

PeSpecA
From what we have just proved, for a multiplicative set S < A4,

#i(P,M) = p(PAs, Mg) if PnS= (.
Theorem 18.7. Let A be a Noetherian ring, M an A-module, and
PeSpec A. Then

(P, M) = ditnp Extl, (k(P), Mp) = dim,p(EXti(A/P, M))y.
In particular, if M is a finite A-module then p;(P, M) < c0.
Proof. Replacing A and M by A, and M, we can assume that (A4, P,k) is
a local ring. Let 0—»>M —1]° 2. be a minimal injective
resolution of M, so that Ext’,(k, M) is obtained as the homology of the
complex

-+ — Hom 4(k, I'" ') — Hom 4(k, I') — Hom ,(k, I** 1)
We can identify Hom ,(k, I') with the submodule T'= {xel'|Px=0}¢<
I'. By construction of the minimal injective resolution, I' is an essential
extension of d(I'™1), so that for xeT’ the submodule Ax ~k intersects
d(I'™Y), and xed(I'" ). Therefore, T < d(I'"!), and dT* "' =dT =0, s0
that Ext’,(k, 4) = T'. Also,

dim, T* = dim, Hom 4(k, I'),
and by Theorem 4, (iii), this is equal to y(P,M). =
Theorem 18.8. A necessary and sufficient condition for a ring A to be
Gorenstein is that a minimal injective resolution 0—A4 —1I1°—
I' — - of A satisfies

I'= @ E(4/P),

htP=i
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or, in other words, (P, A) =, y,p (the Kronecker d) for every PeSpec A.
Proof. By Theorem 7 and condition (2) of Theorem ! we have

Ap is Gorenstein <> (P, A) =6, .p.

Theorem 18.9. Let (A, m) be a Noetherian local ring, and M a finite
A-module. Then

injdim M < o0 =>injdim M = depth A.
Proof. Suppose that injdim M =r < oc. If P is a prime ideal distinct from
m, choose xem — P. Then

0—A/P - A/P,
together with the right-exactness of Ext’{ —, M) gives an exact sequence
Ext’,(A/P, M)—— Ext’,(A/P, M) -0,

so that by NAK Ext",(A/P, M) =0. Putting this together with Lemma 1,
we get Ext’,(k, M)#0. Set t=depthA, and let x,,...,x,em be a
maximal A-sequence; then setting 4/(x,,...,x,) =N we have meAss(N).
Hence there exists an exact sequence 0 -k — N, and we must have
Ext’, (N, M) # 0. The Koszul complex K(x,,...,X,) is a projective resolution
of N=A/(x,,...,x,), so computing Ext by means of it we see that
Ext',(N, M)~ M/(x,,...,x)M,

and by NAK this is non-zero. Thus projdim N = ¢, and from Ext,(N, M) #
0 we get t <r, whereas from Ext,(N, M) #0wegett>r. Hencet=r. W
Remark (the Bass conjecture and the intersection theorem). Let (A4, m, k) be
a Noetherian local ring of dimension d. H. Bass [1] conjectured the
following:

(B) if there exists a finite 4-module M (3 0) of finite injective
dimension, then 4 is a CM ring.

According to Theorem 9 this is equivalent to asking that injdim M =d.
The converse of the Bass conjecture is true. Indeed, if 4 is CM, taking a
maximal A-sequence xy, .., x; and setting B = A/(x;,...,x;) and E = E(k)
we have I, (B) < co. By Theorem 6, M = Hom,(B, E) is also of finite length,
hence is finitely generated. We prove injdim,M < d; the Koszul complex
0—A4— 4% 4% A— B0 with respect to x,, ..., x, provides an 4-
free resolution of B. Now applying the exact functor Hom (-, E) to this

. gives the exact sequence 0—M —E—E‘—-—E‘—E—0. This proves

injdim,M < d.
(B) is a special case of the following theorem.
© IfI': 0—1°—-—]*—0is a complex of injective modules such
that H'(I") is finitely generated for all i and I° is not exact, then
I17#£0.
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Using the theory of dualizing complexes (see [Rob]) one can prove that (€
1s equivalent to the foliowing

Intersection Theorem. If F.: 0—»F ;,—---—F,—0 is a complex of finitely
generated free modules such that H(F) has finite length for all i and F. is
not exact, then F,# 0.

(B) was proved by Peskine and Szpiro [ 1] in some important cases, and
by Hochster {H] in the equal characteristic case (i.e. when 4 contains 3
field) as a corollary of his existence theorem for the ‘big CM module’,i¢.a
(not necessarily finite) A-module with depth =dim A, see [H] p.10 and
p.70. The intersection theorem was conjectured by Peskine—Szpiro [3] and
by P. Roberts independently. They pointed out that it was also a
consequence of Hochster’s theorem. Finally, P. Roberts [3] settled the
remaining unequal characteristic case of the intersection theorem by using
the advanced technique of algebraic geometry developed by W. Fulton
([Ful]). Therefore (B), which was known as Bass’s conjecture for 24 years,
is now a theorem. Some other conjectures listed in {H] are still open.

Exercises to §18. Prove the following propositions.

18.1. Let (A, m) be a Noetherian local ring, x,,..., x, an A-sequence, and set
B=A/(x,,...,x,); then A4 is Gorenstein<> B is Gorenstein.

18.2. Use the result of Ex. 18.1 to give another proof of Theorem 3.

18.3. If A is Gorenstein then so is the polynomial ring A[X].

18.4. Is the ring R of Ex. 17.2 Gorenstein?

18.5. Let {4, m, k) be a local ring; then E = E (k) is a faithful A-module (that is
0#acA=aE #0).

18.6. Let(A,m, k)bea complete Noetherian local ring and M an A-module. If M
is a faithful 4-module and is an essential extension of k then M = E (k).

18.7. Let k be a field, S=k[X,,...,X,] and P=(X,,...,X,); set A=5p,
A=k[X,,....,X,] and E=k[X[',...,X,']. We make E into an
A-module by the following multiplication: if X*= X{'...X;" and X—ﬁ‘
= X[#... X, the product XX ~# is defined to be X* ¢ if o, < f; foralli
and 0 otherwise. Then E = E4(S/P) = E (k). (Use the preceding question;
see also Northcott [8] for further results. The elements of this A-module
E are called inverse polynomials; they were defined and used by Macaulay
[Mac] as early as 1916))

18.8. Let k be a field and ¢t an indeterminate. Consider the sub.ring A_ =
k[£3,¢5,t7] of k[ ¢] and show that A4 is a one-dimensional CM ring which
is not Gorenstein. How about k[¢3,t%,¢] and k[¢%,¢°,¢°]?
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Regular rings

“Regular local rings have already been mentioned several times, and in
this chapter we are going to carry out a study of them using homological
; gebra. Serre’s Theorem 19.2, characterising regular local rings as Noetherian
local rings of finite global dimension, is the really essential result, and
from this one can deduce at once, for example, that a localisation of a
-regular local ring is again regular (Theorem 19.3); this is a result which
ideal theory on its own was only able to prove with difficulty in special
‘cases. §20 on UFDs is centred around the theorem that a regular local
ring is a UFD, another important achievement of homological methods;
we only cover the basic topics. This section was written referring to the early
parts of Professor M. Narita’s lectures at Tokyo Metropolitan University.
In §21 we give a simple discussion of the most elementary results on
complete intersection rings. This is an area where the homology theory of
M. André plays an essential role, but we are only able to mention this in
passing,

19 Regular rings

Minimal free resolutions. Let (4, m,k) be a local ring, M and N finite
A-modules. An A-linear map@:M — N induces a k-linear map
M@k — N ®k, which we denote @; then one sees easily that

¢ is an isomorphism <> ¢ is surjective and Ker ¢ < mM.
In particular for free modules M and N, if @ is an isomorphism then rank
M =rank N, and writing ¢ as a matrix we have detg¢m, so that

@ is an isomorphism <> ¢ is an isomorphism.
Let M be a finite A-module. An exact sequence

d dio

*) ...___,Li__"_,Li_l_,..._,Ll_‘i‘_,Lo_g_,M_,o’

(or the complex L. )is called a minimal ( free) resolution of M if it satisfies the
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three conditions (1) each L, is a finite free A-modules, (2) d; = 0, or in other
words d;L;cmL;_, for all i, and (3) & L,®k — M ®k is an isomorph-
ism. Breaking up (*) into short exact sequences 0> K, — L, — M -0,
0->K,—L;—K,;=0,..., we have L,Qk-5>M®k, L, @k
K, ®k,.... Any two minimal resolutions of M are isomorphic as com-
plexes (prove this!).

Example. Let x4,...,x,em be an A-sequence, and let K, = K.(xg5...,x,)
be the Koszul complex

O—’Kn'—>Kn71 _’""—>K0'—>A/(X1,...,Xn)—>0;

then K. is a minimal resolution of 4/(x,,..., x,) over A.

Let (A, m, k) be a Noetherian local ring; then a finite A-module M
always has a minimal resolution. Construction: let {w,,...,w,} be a
minimal basis of M, let L, = Ae; + - + Ae, be a free module, and define
e:Lo— M by ele;)=w,; taking K, to be the kernel of ¢ we get
0-K,—Ly—M->0 with Li@k>~M®k Now K, is again a
finite A-module, so that we need only proceed as before.

Lemma 1. Let (A, m, k) be a local ring, and M a finite A-module. Suppose
that L. is a minimal resolution of M; then

(i) dim, Tor#(M, k) = rank L; for all i,

(i) proj dim M = sup {i|Torf(M, k) # 0} < proj dim 4k,

(iii}if M # 0 and proj dim M =r < oo then for any finite A-module N #0
we have Ext’,(M,N)#0.

Proof. (i) We have Tor{(M, k)= H,(L.®k), but from the definition of
minimal resolution, d; = 0, and hence H,(L.® k) = L, ® k, and the dimen-
sion of this as a k-vector space is equal to rank ,L;.

(i) follows from (1).

(iii) Since L,., =0 and L,#0, Ext(M,N) is the cokernel of d:
Hom(L,, N)«— Hom(L,_,, N), but since L; is free, Hom(L;, N) is just
a direct sum of a number of copies of N; we can write d,:L,—L,_; asa
matrix with entries in m, and then d* is given by the same matrix, so that
Im(d¥*) « mHom(L,, N), and by NAK Ext’,(M,N)#0. =

Remark. One sees from the above lemma that Tor(M, k) = 0 implies that
L;=0, and therefore projdim M <i, so that Tor;(M,k)=0 for j>i. It is
conjectured that this holds in more generality, or more precisely:
Rigidity conjecture. Let R be a Noetherian ring, M and N finite R-modules;
suppose that projdimM < oco. Then TorX(M,N)=0 implies that
Torf(M,N)=0 for all j > i.

This has been proved by Lichtenbaum [1] if R is a regular ring, but
is unsolved in general.
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The following theorem is not an application of Lemma 1, but is proved
by a similar technique.

Theorem 19.1 (Auslander and Buchsbaum). Let A be a Noetherian local
‘ring and M #0 a finite A-module. Suppose that proj dim M < oo; then
projdim M + depth M = depth 4.

-Proof. Set projdim M = h; we work by induction on h. If h=0 then M
'is a free A-module, so that the assertion is trivial. If h =1, let

) 0-am- A M0
“be a minimal resolution of M. We can write ¢ as an m x n matrix with
entries in m. From (f) we obtain the long exact sequence

o — Extl, (k, A™ -2 Ext?, (k, A™) — Ext, (k, M) — -,

and writing out Exty(k, A™) = Ext/,(k, A)" and Ext}(k, A") = Ext;(k, A)",
we can express ¢, by the same matrix as ¢. However, the entries of ¢ are
-elements of m, and therefore annihilate Ext’,(k, 4), so that ¢, =0, and we
ve an exact sequence

0 Exti, (k, A" —> Ext’,(k, M) — Exti} ' (k, AY" >0

r every i. Since depth M = inf {i|Ext},(k, M) #0} we have depth M =
epth A — 1 and the theorem holds if h=1. If h > | then taking any exact
‘sequence

0-M —A"——>M-0,

e have projdim M’ =h — 1, so that an easy induction completes the
roof. m

Lemma 2. Let A be a ring and n >0 a given integer. Then the following
 conditions are equivalent.

‘(1) projdim M < n for every A-module M;

(2) projdim M < n for every finite A-module M;

(3)yinjdim N < # for every A-module N;

@) Ext"* (M, N) =0 for all A-modules M and N.

0of. (1)=>(2) is trivial.

(=(3) For any ideal I, the A-module A4/I is finite, so that Ext’*(A/I,
=0, so that by §18, Lemma 1, injdim N <n.

“(3)=(4) is trivial, and (4)=(1) is well-known (sce p. 280).

We define the global dimension of a ring A by

gldim 4 = sup {proj dim M| M is an A-module}.

.'Ocording to Lemma 2 above, this is also equal to the maximum projective
iension of all finite A-modules. If (A, m, k) is a Noetherian local ring then
Y Lemma 1, gl dim A = proj dim 4k.
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We have defined regular local rings (see §14) as Noetherian local rings
for which dim 4 =embdim 4, and we have seen that they are integral
domains (Theorem 14.3) and CM rings (Theorem 17.8). A regular local
ring is Gorenstein (Theorem 18.1, (5')). A necessary and sufficient condition
for a Noetherian local ring (4, m, k) to be regular is that gr,(A) is a poly-
nomial ring over k (Theorem 17.10). The following theorem gives another
important necessary and sufficient condition.

Theorem 19.2 (Serre). Let A be a Noetherian local ring. Then

A is regular < gldim A =dim A< gldim 4 < c0.
Proof. (I) Suppose that (4, m, k) is an n-dimensional regular local ring.
Let xq,...,x, be a regular system of parameters; then since this is an
A-sequence, the Koszul complex K. (x;,..., x,) is 4 minimal free resolution
of Af(x(,...,x,)=k,and K, #0, K, , { =0, so that as we have already seen,
gldim A = projdimk = n.

(IT) Conversely, suppose that gldim A =r < co and embdim 4 =s5. We
prove that A is regular by induction on s; we can assume that s > 0, that
is m#0. Then meAss(A4): for if 0 £aecA is such that ma =0, consider
a minimal resolution

0-L —L _,——L;—k->0
of k (with r > 0); then L, « mL,_, but then aL, =0, which contradicts the
assumption that L, is a free module. Thus we can choose xem not
contained in m? or in any associated prime of A. Then x is A-regular,
hence also m-regular, so that if we set B = A/x A then according to Lemma2
of §18, Exti(m, N)= Extj(m/xm,N) for all B-modules N, and hence
we obtain projdimgm/xm < r.

Now we prove that the natural map m/xm —> m/xA splits, so that
m/x A is isomorphic to a direct summand of m/xm. Since x¢m?, we can take
a minimal basis x, = x, X,,...,x; of m starting with x (here s=emb
dim A4). We set b =(x,,..., x,), so that by the minimal basis condition,
bnxA < xm, and therefore there exists a chain

m/xA = (b+ xA)/xA ~b/(bnxA}) — m/xm —m/xA
of natural maps, whose composite is the identity. This proves the above
claim. Now clearly,

projdimym/xA < projdimgm/xm < r.
Taking a minimal B-projective resolution of m/x4 and patching it together
with the exact sequence 0—m/xA— B-—k—0 gives a projective
resolution of k of length <r + 1, and hence gldim B = projdimgk <r + 1,
so that by induction, B is a regular local ring. Since x is not contained
in any associated prime of 4 we have dim B=dim A — 1, and therefore
A is regular. =
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biorem 19.3 (Serre). Let A be a regular local ring and P a prime ideal;
n Ap is again regular.

of. Since projdim,A/P < gldim 4 < o0, as an A-module A/P has a
Bnjective resolution L, of finite length. Then L ,®,A4p is a projective
Lolution of (4/P)®,Ap = Ap/PA = k(P) as an Ap-module, so that x(P)
a projective resolution of finite length as an A4p-module, which means
t Ap has finite global dimension; thus by the previous theorem, 4, is

Jar. H

snition. A regular ring is a Noetherian ring such that the localisation
every prime is a regular local ring. By the previous theorem, it is
cient for the localisation at every maximal ideal to be regular.

heorem 19.4. A regular ring is normal.

roof. The definition of normal is local, so that it is enough to show that
regular local ring is normal. We show that the conditions of the corollary
f Theorem 11.5 are satisfied. (a) The localisation at a height 1 prime ideal
a DVR by the previous theorem and Theorem 11.2. (b) All the prime
ivisors of a non-zero principal ideal have height 1 by Theorem 17.8 (the
mplication regular=CM). =

heorem 19.5. 1f A is regular then so are A[X] and A] X].
roof. For A[X], let P be a maximal ideal of A[X] and set Pn A =m.
[X]pis alocalisation of A, [X], so that replacing A by A, we can assume
at A is a regular local ring. Then setting A/m =k we have A[ X ]/m[X] =
[X1], so that there is a monic polynomial f(X) with coefficients in A such
at P =(m,f(X)), and such that f reduces to an irreducible polynomial
€k[X] modulo m. Then by Theorem 15.1, we clearly have
dimA[X]p=htP=1+htm=1+dim 4;
.on the other hand m is generated by dim A elements, so that P = (m, f)
s generated by dlmA + 1 elements, and therefore A[ X ], is regular.
For A X, set B= A[ X ] and let M be a maximal ideal of B; then Xe M
Yy Theorem 8.2, (i). Therefore M N A =m is a maximal ideal of 4. Now
although we cannot say that B, contains A4, [ X |, the two have the same
mpletion, (By,) =(A4,) [X]. A Noetherian local ring is regular if and
only if its completion is regular (since both the dimension and embedding
‘ ‘dimension remain the same on taking the completion). Thus if we replace
A by (A, ), the maximal ideal of B= A[X] is M =(m, X), and ht M =
tm+ 1, so that B is also regular. =

Next we discuss the properties of modules which have finite free
resolutions; (the definition is given below).
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Lemma 3 (Schanuel). Let A be a ring and M an A-module. Suppose that
0-K—P—>M-0 and 0K —P -—>M-0

are exact sequences with P and P’ projective. Then K@ P ~K' ®P.
Proof. From the fact that P and P’ are projective, there exist A:P — P’
and A: P’ — P, giving the diagram:

0K -—P-5M-0

» H; I with ’A=0 and ol =o.

0K —P5M -0
We add in harmless summands P’ and P to the two exact rows, and line
up the middle terms;

(2,0)

0-K®P —>P@®P—->M-0

gl

(0,2°)

0-POK —P®P S M-0.

Here ¢p:P@® P — P @ P’ is defined by

x_l -4 X for xeP ‘'eP’
PAx )\ 1=\ x © €5 XE

and satisfies

N
(O’a)<,1 1—1,1')’(“’0)’

1— X4
-4
Moreover, by matrix computation we see that iy = 1 and yr¢p = 1,so that ¢
is an isomorphism and y = ¢ ~!. Therefore ¢ induces an isomorphism

K®P =5P®K. =

and similarly ¢ is defined by ( '; > and satisfies (o, Oy = (0, ).

Lemma 4 (generalised Schanuel lemma). Let A, M be as above, and suppose
that 0»P,—+—P, —Py,—M-0and 0-Q,— —0Q, —
Q,—> M0 are exact sequences with P; and (; projective for
0<ig<n-—1 Then
Pi@Q,®P,®0 >0,@P, @0, .

Proof. Write K for the kernel of P,— M and K’ for the kernel of
Qo — M; then, by the previous lemma, K@® 0y~ P,® K'. Now add
in harmless summands @, and P, to 0-P,— = —P —
K-0and Q—-Q,— - —Q; — K'—0 respectively, to obtain
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0-P,——P,—P ®Q,-—K®Q,—0

12
0-Q,——Q, —P,®Q, — P,®K 0.
Ipduction on n now gives
(P1DQ)DQ,DP;® " =(Pe+Q)DP,DQ;® . W
 Definition. A finite free resolution (or FFR for short) of an A-module M is
an exact sequence O0—-F,— - —F —F,— M0 (of finite
~length n) such that each F; is a finite free module. If M has an FFR we set
(M) =Y.(— 1) rank F;, and call y(M) the Euler number of M. By Lemma 4,
_this is independent of the choice of FFR. Moreover, since for any prime
“jdeal P of A
‘ 0= (F,)p———(F)p—(Fo)p — Mp—0
_is an FFR of the Ap-module M, we have y(M)=y(Mp). If M is itself
_free then one sees easily from Lemma 4 that y(M)=rank M.

" Theorem 19.6. Let (A, m) be a local ring, and suppose that for any finite
. subset Ecwm there exists 0 yeAd such that yE=0; then the only
- A-modules having an FFR are the free modules.

Remark. If A is Noetherian then the assumption on m is equivalent to
meAss(A), or depth A = 0. In this case the theorem is a special case of
Theorem 19.1.
Proof. Suppose that 0—»F,—F,_ | — -+ —F,— M -0 is an FFR
f M, and set N = coker(F,— F,_,); if we prove that N is free then
we can decrease n by 1, so that we only need consider the case 0—
'v—F,—M-0. Now let 0-L, —L,—M—0 be a minimal
free resolution of M; then since L, and F, are finitely generated, by
Schanuel’s lemma (or by Theorem 2.6), L, is also finite. Considering bases of
Ly and L, we can write down a set of generators of L, as a submodule of
mL, using only a finite number of elements of m. Then by assumption, there
Xists 0 # yeA such that'yL, =0. Since L, is a free module, we must
ave L, =0, so that M ~ L, and is free. m
& Theorem 19.7. Let A be any ring; if M is an A-module having an FFR then
{M) > 0.
Proof. Choose a minimal prime ideal P of A; since (M) = y(Mp), we can
lace 4 by Ap, and then A is a local ring with maximal ideal m equal
nil(A). Then the assumption of the previous theorem is satisfied: for
Veén x., ..., x,em, we can assume by induction on r that there is a z #0
h that zx, = = zx,_; but x, is nilpotent, so that there is an i >0
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such that zx} #0 but zx!*! =0, and we can take y = zx!. Therefore by
the previous theorem M is a free module, and y(M)=rank M >0. g

Theorem 19.8 (Auslander and Buchsbaum [2]). Let 4 be a Noetheriap
ring and M an A-module, and suppose that M has an FFR. Then the
following three conditions are equivalent:

(1) ann(M) #0;

(2) x(M)=0,

(3) ann(M) contains an A-regular element.

Proof. (1)=(2) Suppose that y(M)> 0; then for any PeAss(4) we have
#(Mp) >0, and hence M, #0. By Theorem 6, M, is a free Ap-module, so
that setting I =ann (M) we have [, =ann(M,)=0. If we set J =ann(])
then this is equivalent to J & P. Since this holds for every PeAss(4)
we see that J contains an A-regular element, but then J-I = 0 implies that
1=0.

(2)=(3) If y(M) =0 then by Theorem 6, M, =0 for every PeAss(A).
This means that ann(M)¢ P, so that ann(M) contains an A-regular
element,

(3)=(1) is obvious. m

Theorem 19.9 (Vasconcelos [1]). Let 4 be a Noetherian local ring, and
I a proper ideal of A; assume that projdimI < co. Then

I is generated by an A-sequence < I/I? is a free module over A/I.
Proof. (=>) is already known (Theorem 16.2). In fact, I*/I"*' is a free
A/l-module for v=1,2,....

(=) We can assume that I # 0. Since I has finite projective dimension
over A so has A/I, and since A4 is local, A/I has an FFR. Now ann(4/I)=1,
so that by the previous theorem I is not contained in any associated prime
of 4, and therefore we can choose an element xef such that x is not
contained in ml or in any associated prime of A. Then x is A-regular,
and x=xmod/? is a member of a basis of I/I? over A/I; let x,
V2s...,ya€I be such that their images form a basis of I/I% Then if we
set B= A/xA, we see by the same argument as in (II) of the proof of
Theorem 2 that projdimyl/xI < oo, and that I/xA is isomorphic to a direct
summand of I/xI. We now set I* = I/xA, so that projdimgl* < 0. But
on the other hand on sees easily that I*/I*? is a free module over B/T,
and an induction on the number of generators of I completes the proof.

Remark. In Lech [1], a set x,,...,x, of elements of A is defined to be
independent if

Yax;=0 for aeA=ape(xy,..,x,) foralli
If we set I =(x,....,x,) then this condition is equivalent to saying that
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the images of x,,...,x, in I/I? form a basis of I/I* over A/I. Then if 4
and I satisfy the hypotheses of the previous theorem, the theorem tells us
that I =(y,,...,y,) with y,,...,y, an A-sequence. Setting x; = ) a;;y; we
see that the matrix (q;;) is invertible when considered in A/I; this means that
the determinant of (g;;) is not in the maximal ideal of 4, and so (a,)) itself
is invertible. Thus x,,...,x, is an A-quasi-regular sequence, hence an
A-sequence. In particular, we get the following corollary.

Corollary. Let (4,m) be a regular local ring. Then if x,,...,x,em are
independent in the sense of Lech, they form an A-sequence.

However, if we try to prove this corollary as it stands, the induction
does not go through. The key to success with Vasconcelos’ theorem is to
strengthen the statement so that induction can be used effectively. Now
as Kaplansky has also pointed out, the main part of Theorem 2 (the
implication gldim A < co= regular) follows at once from Theorem 9,
because if m is generated by an A-sequence then embdim 4 < depth 4 <
dim A.

Exercises to §19.

19.1. Let k be a field and R=Ry,+ R, + R, ++-- a Noetherian graded ring
with Ry =k; set m =R, + R, +---. Show that if R is an n-dimensional
regular local ring then R is a polynomial ring R = k[y,,...,y,] with y;
homogeneous of positive degree.

19.2. Let A be aringand M an A-module. Say that M is stably free if there exist
finite free modules F and F’ such that M @ F ~ F’. Obviously a stably free -
A-module M is a finite projective A-module, and has an FFR 0-
F— F'— M —0. Prove that, conversely, a finite projective module
having an FFR is stably free.

19.3. Prove that if every finite projective module over a Noetherian ring A4 is
stably free then every finite A-module of finite projective dimension has an
FFR.

19.4. Prove that if every finite module over a Noetherian ring 4 has an FFR
then A4 is regular.

20 UFDs
This section treats UFDs, which we have already touched on in
§1; note that the Bourbaki terminology for UFD is ‘factorial ring’. First of
all, we have the following criterion for Noetherian rings.

Theorem 20.1. A Noetherian integral domain 4 is a UFD if and only if
every height 1 prime ideal is principal.
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Proof of ‘only if". Suppose that 4 is a UFD and that P is a height 1
prime ideal. Take any non-zero ae P, and express a as a product of prime
elements, a = [ |n;. Then at least one of the m; belongs to P; if m,e P then
(n;) < P, but (n;) is a non-zero prime ideal and ht P =1, hence P = (r)).
Proof of ‘if". Since A is Noetherian, every element ae A which is neither
0 nor a unit can be written as a product of finitely many irreducibles,
Hence it will be enough to prove that an irreducible element a is a prime
element. Let P be a minimal prime divisor of (a); then by the principal
ideal theorem (Theorem 13.5), ht P =1, so that by assumption we can
write P =(b). Thus a = bc, and since a is irreducible, ¢ is a unit, so that
(a) =(b)=P, and a is a prime element. W

Theorem 20.2. Let A be a Noetherian integral domain, I" a set of prime
elements of 4, and let S be the multiplicative set generated by I'. If A is
a UFD then so is 4.

Proof. Let P be a height 1 prime ideal of A.If P~ S # ¢J then P contains
an element nel", and since 74 is a non-zero prime ideal we have P = 74.
If PnS = J then PAg is a height 1 prime ideal of Ag, so that PAg = aAg
for some acP. Among all such a choose one such that a4 is maximal;
then a is not divisible by any nel. Now if xeP we have sx =ay for
some seS and yed. Let s=mn,...n, with m,el; then aé¢mA, so that
yem,A, and an induction on r shows that yesAd, so that xead. Hence
P=adA. n

Lemma 1. Let A be an integral domain, and a an ideal of 4 such that
a@A"~A""1; then a is principal.

Proof. Fix the basis e,,...,e, of A”*1, and viewing a@® A" < A@® A", fix
fos---» [ such that f, is a basis of A4 and f,,..., f, a basis of A". Then
the isomorphism @:4"*' — a@® A" can be given in the form ¢(e)=
S oayf; Write d; for the (i,0)th cofactor of the matrix (a,), and d
for the determinant, so that, since ¢ is injective, d #0, and Zaiodi=d,
Ya,d; =0 if j#0. Hence if we set ey =) 0de; we have o(ey) = dfo-
Moreover, since the image of ¢ includes fi,..., f,, there exist €,
e,eA"* ! such that ¢(e}) = f;. Now define a matrix (c;) by ;= Y k=o€l
for j=0,...,n (so ¢co; =d,). Then we have

01 0
(Cjk)(aij): . ..
00 1/

so that by comparing the determinants of both sides we get det(cp) = L
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Therefore e,..., e, is another basis of A"*!, and af, = @(Ae,) =dAf,,
so that a=dA. =

Let K be the field of fractions of the integral domain 4; for a finite
A-module M, the dimension of M ®,K as a vector space over K is called
the rank of M. A torsion-free finite A-module of rank 1 is isomorphic to
an ideal of A. Lemma 1 can be formulated as saying that for an integral
domain A, a stably free rank 1 module is free (see Ex. 19.2). The elementary
proof given above is taken from a lecture by M. Narita in 1971.

Theorem 20.3 (Auslander and Buchsbaum [3]). A regular local ring is a
UFD.
Proof. Let (4,m) be a regular local ring; the proof works by induction
on dim A. If dim A =0 then A is a field and therefore (trivially) a UFD.
If dim A =1 then 4 is a DVR, and therefore a UFD. We suppose that
dim A > 1 and choose xem — m?; then since x4 is a prime ideal, applying
Theorem 2 to I'={x}, we need only show that A, is a UFD (where
A,= A[x"*] is as on p. 22). Let P be a height 1 prime ideal of 4, and
set p=PnA4; we have P=pA,. Since A is a regular local ring, the
A-module p has an FFR, so that the A,-module P has an FFR. For any
prime ideal Q of A,, the ring (4,)p=A4,., is a regular local ring of
dimension less than that of 4, so by induction is a UFD. Thus Py is free
asan (4,),-module, so that by Theorem 7.12, the A,-module P is projective;
hence by Ex. 19.2, P is stably free, and therefore by the previous lemma,
P is a principal ideal of 4,. =

The above proof is due to Kaplansky. Instead of our Lemma 1, he used
the following more general proposition, which he had previously proved:
if A is an integral domain, and 1,,J; are ideals of 4 for 1 <i < r such that
(&% S -y Ji then I,... I, ~J,...J, This is an interesting property
of ideals, and we have given a proof in Appendix C.

Theorem 20.4. Let A be a Noetherian integral domain. Then if any finite
A-module has an FFR, 4 is a UFD.
Proof. By Ex. 19.4, A is a regular ring. Let P be a height 1 prime ideal
of A. Then A, is a regular local ring for any meSpec 4, so by the previous
theorem, the ideal P,, is principal, and is therefore a free 4, -module. Hence
by Theorem 7.12, P is projective. Therefore by Ex. 19.2, P is stably free,
and so by Lemma [ is principal. =

Let 4 be an integral domain; for any two non-zero elements a, be A,
the notion of greatest common divisor (g.c.d.) and least common multiple
(Le.m.) are defined as in the ring of integers. That is, 4 is a g.c.d. of a and
b if 4 divides both a and b, and any element x dividing both a and b
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divides d; and e is an L.cm. of a and b if e is divisible by both a and b,
and any y divisible by a and b is divisible by e; this condition is equivalent
to (e) = (@) N (b).

Lemma 2. If an Lcm. of a and b exists then so does a g.c.d.

Proof. If (a)n(b) = (e) then there exists d such that ab = ed. From ee(q)
we get be(d) and similarly a&(d), so that (a,b) = (d). Now if x is a common
divisor of @ and b then a = xt and b = xs, so that xst is a common multiple
of g, b, and is hence divisible by e. Then from ed = ab = x- xst we get that
d is divisible by x. Therefore, dis a gcd. ofaand b. =

Remark 1. 1f A is a Noetherian integral domain which is not a UFD then
A has an irreducible element a which is not prime. If xye(a) but x¢(a),
y¢(a) then the only common divisors of a and x are units, so that | is a
gcd. of a and x. However, xye(a)n(x), but xy¢(ax), so that (a)n
(x) # (ax), and there does not exist any l.c.m. of a and x. Thus the converse
of Lemma 2 does not hold in general. »

Remark 2. 1f A is a UFD then an intersection of an arbitrary collection
of principal ideals is again principal (we include (0)). Indeed, if ();; a,4 #0,
then factorise each 4; as a product of primes:

a; = u; H p;(l,a),
a

with u; units, and p, prime clements such that p,A #p,A4 for «#f.
Then () a;A = dA, where d = [ pi* """ (We could even allow the g; to
be elements of the field of fractions of 4.)

Theorem 20.5. Anintegral domain A is a UFD if and only if the ascending
chain condition holds for principal ideals, and any two elements of 4 have
an Lem.

Proof. The “only if” is already known, and we prove the ‘if”. From the first
condition it follows that every element which is neither 0 nor a umt can
be written as a product of a finite number of irreducible elements, so that
we need only prove that an irreducible element is prime. Let a be an
irreducible element, and let xye(a) and x¢(a). By assumption we can
write (@) N (x) = (z); now 1 is a g.c.d. of @ and x, so that one sees from tbe
proof of Lemma 2 that (z) = (ax), and then xye(a)n(x)=(ax) implies
that ye(a). Therefore (a} is prime. W

Theorem 20.6. Let A be a regular ring and u, veA. Then udnvA is 2
projective ideal.

Proof. A_ is a UFD for every maximal ideal m, so that (uAnvA)d, =
uA,,NvA, is a principal ideal, and hence a free module. =
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Theorem 20.7. 1If A is a UFD then a projective ideal is principal.

‘ Proof. By Theorem 11.3, it is equivalent to say that a non-zero ideal a 18
projective or invertible. Hence if we set K for the field of fractions of A,
then there exist u;eK such that u,a = A and g;ea such that Y uwa;=1.
We have ac()u7'4, and conversely if xe(Ju;7'A then x=
Z(xui)a,-ea, and hence a = ﬂ u; ' A;now since A is a UFD, the intersection
of principal fractional ideals is again principal. W

Theorem 20.8. If A is a regular UFD then so is A[X].
"Proof. Sct B= A[X]. By Theorem 5, it is enough to prove that uBnvB
‘is principal for wu,veB; set a=uBnuvB. Then by Theorem 6 and
"Theorem 19.5, a is projective, so that

1@z A =a@g(B/XB)=a/Xa
_is projective as an A-module. Suppose that a= X"b with b ¢ XB; then
/Xa ~b/Xb, so that b is isomorphic to a, hence projective, and therefore
“locally principal. B is a regular ring, so that the prime divisors of b all
-have height 1. Since XB is also a height 1 prime ideal and b ¢ XB we
ave b:XB =b, hence bn XB = Xb. Therefore since we can view b/Xb
ias b/Xb=b/bnXBc B/XB=A, by Theorem 7 it is principal, hence
= yB+ Xb for some yeb; then by NAK, b=yB, so thata=X"yB. =

: Remark. There are examples where 4 is a UFD but A[X] is not.

It is easy to see that a UFD is a Krull ring. For any Krull ring A4 we
can define the divisor class group of 4, which should be thought of as a
easure of the extent to which A fails to be a UFD. We can give the
efinition in simple terms as follows: let 2 be the set of height 1 prime
deals of the Krull ring 4, and D(A) the free Abelian group on #. That
'ls D(A) consists of formal sums ) ,_,n,p (with n,eZ and all but finitely
“many n, = 0), with addition defined by

(X nyp) + (X mp) =Y. (n, + mip.
Let K be the field of fractions of 4, and K* the multiplicative group of
on-zero elements of K, and for acK* set div(a) = Zpegvp(a)-p, where v,
the normalised additive valuation of K corresponding to p. Then
iv(ab) = div(a) + div (b), so that div is a homomorphism from K* to D(A).
sWe write F(A) for the image of K*; this is a subgroup of D(4), so that
€ can define C(A)= D(A)/F(A) to be the divisor class group of A.
3 bviously, if 4 is a UFD then each pe is principal, and if p = a4 then
$ an element of D(A) we have p = div(a), so that C(4) =0. Conversely,
-C(A) =0 then each pe# is a principal ideal, and putting this together
ith the corollary of Theorem 12.3, one sees easily that A is a UFD. Hence

Aisa UFD<(C(A4)=0.
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Now let A be any ring, and M a finite projective A-module. For each
PeSpec A, the localisation M, is a free module over A, and we write
n(P) for its rank. Then n is a function on Spec A4, and is constant on every
connected component (since n(P) = n(Q) if P = Q). This function n is called
the rank of M. If the rank is a constant r over the whole of Spec 4 then
we say that M is a projective module of rank r. We write Pic(4) for the
set of isomorphism classes of finite projective A-modules of rank 1; cl(M)
denotes the isomorphism class of M. If M and N are finite projective rank
1 module then so is M ®,N; this is clear on taking localisations. Thus
we can define a sum in Pic(A4) by setting

(M) + cl(N) =cl{(M®N).
We set M* =Hom (M, A), and define p:M @ M* — A by

QD(Z mi®fi):Zfi(mi); ,
then ¢ is an isomorphism (taking localisations and uéing the corollary to
Theorem 7.11 reduces to the case M = A, which is clear). Hence cl(M*) =
— cl{M), and Pic(A) becomes an Abelian group, called the Picard group
of A. If A is local then Pic(4)=0.

If A is an integral domain with field of fractions K, then M, =M ® K,
so that the rank we have just defined coincides with the earlier definition
(after Lemma 1). If M is a finite projective rank 1 module, then since M
is torsion-free we have M < M, ~K, so that M is isomorphic as an
A-module to a fractional ideal; for fractional ideals, by Theorem 11.3,
projective and invertible are equivalent conditions, so that for an integral
domain A, we can consider Pic{A) as a quotient of the group of invertible
fractional ideals under multiplication. A fractional ideal I is isomorphic
to A as an A-module precisely when [ is principal, so that

Pic(4) = {invertible frac-} /{principal}.

tional ideals ideals

Suppose in addition that 4 is a Krull ring. Then we can view Pic(4)
as a subgroup of C(A). To prove this, for pe# and I a fractional ideal.
set

v,(I) = min {v,(x)| xel};
this is zero for all but finitely many pe 2 (check this!), so that we can set
div(l)= ) v,(I) peD(4).
pe?
For a principal ideal I = 24 we have div (/) = div (). One sees easily that
div(Il') = div(l) + div(l’), and that div(4) =0, so that if I is invertible,
div(l)= —div(I™).
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For invertible I we have (I"')"'=1 indeed, I =(I"')"! from the
definition, and I=1-A>I(I~'I~Y)"Y)>I~Y)~L If I is invertible and
div()=0thendiv(I"')=0,sothat c A, I"' < A;hence Ac(I" ") ' =1,
. and I = A. It follows that if I, I are invertible, div (/) = div({") implies = I'.
Thus we can view the group of invertible fractional ideals as a subgroup of
- D(A), and Pic(A4) as a subgroup of C(A).

If A is a regular ring then as we have seen, pe2 is a locally free module,
nd so is invertible. Clearly from the definition, div(p) = p. Hence, in the
case of a regular ring, D(A) is identified with the group of invertible
. fractional ideals, and C(A) coincides,with Pic(A4).

The notions of D(A) and Pic(A) originally arise in algebraic geometry.
Let V be an algebraic variety, supposed to be irreducible and normal. We
write 2 for the set of irreducible codimension 1 subvarieties of V, and
efine the group of divisors D(V) of V to be the free Abelian group on Z;
divisor (or Weil divisor) is an element of D(V). Corresponding to a
rational function f on V and an element We, let vy (f) denote the
rder of zero of f along W, or minus the order of the pole if f has a pole
along W. Write div (f) =Y y,vw(f) Wior the divisor of f on V (or just
1)). For We2, the local ring Oy of W on V is a DVR of the function
eld of V, and vy is the corresponding valuation. We say that two divisors
M, NeD(V) are linearly equivalent if their difference M — N is the divisor
of a function, and write M ~ N. The quotient group of D(V) by ~, that
is the quotient by the subgroup of divisors of functions, is the divisor class
group of V (up to linear equivalence), and we write C(V) for this. (In
addition to linear equivalence one also considers other equivalence
elations with certain geometric significance (algebraic equivalence,
numerical equivalence,...), and divisor class groups, quotients of D(V) by
he corresponding subgroups.)

- A divisor M on V is said to be a Cartier divisor if it is the divisor of
a function in a neighbourhood of every point of V. From a Cartier divisor
one constructs a line bundle over V, and two Cartier divisors give rise to
Bomorphic line bundles if and only if they are linearly equivalent. Cartier
divisors form a subgroup of D(V), and their class group up to linear
equivalence is written Pic(V); this can also be considered as the group of
Isomorphism classes of line bundles over V (with group law defined by
‘gnsor product). If ¥ is smooth then (by Theorem 3) there is no distinction
between Cartier and Weil divisors, and C(V) = Pic (V).

v The reader familiar with algebraic geometry will know that the divisor
k]aSS group and Picard group of a Krull ring are an exact translation of
*h.e corresponding notions in algebraic geometry. If V is an affine variety,
With coordinate ring k[ V] = A then C(V)= C(A4) and Pic (V)= Pic(A). In
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this case, to say that A is a UFD expresses the fact that every codimension
1 subvariety of V can be defined as the intersection of ¥ with a hypersurface,
If V< P" is a projective algebraic variety, defined by a prime idea)
Ick[X,,...,X,], and we set A=k[X]/I=k[,...,,] (with ¢, the
class of X ;) then A is the so-called homogeneous coordinate ring of V. If
A is integrally closed we say that V is projectively normal (also
arithmetically normal). This condition is stronger than saying that V is
normal (the local ring of any point of V is normal). If 4 is a UFD then
every codimension 1 subvariety of Vcan be given as the intersection in
P" of V with a hypersurface. Let m =(&,,...,£,) be the homogeneous
maximal ideal of A, and write R= A for the localisation. The above
statement holds if we just assume that R is a UFD; see Ex. 20.6. All the
information about V is contained in the local ring R.

Thus C(A), Pic(A) and the UFD condition are notions with important
geometrical meaning, and methods of algebraic geometry can also be used
in their study. For example, in this way Grothendieck [G5] was able to
prove the following theorem conjectured by Samuel: let R be a regular
local ring, P a prime ideal generated by an R-sequence, and set A = R/P,
if A, 1s a UFD for every peSpec 4 with htp <3 then 4 is a UFD.

We do not have the space to discuss C(A4) and Pic(A) in detail, and we
just mention the following two theorems as examples:

(1) If 4 is a Krull ring then C(4) ~ C(A[X]).

This generalises the well-known theorem (see Ex. 20.2) that if A isa UFD
then so is A[X].

(2) If A is a regular ring then C(A4) ~ C(A[XT]).

This generalises Theorem 8.

Finally we give an example. Let k be a field of characteristic 0, and set
A=k[X,Y,Z](Z"— XY)=k[x,y,z] for some n>1. Then A/z,x)=
kLX,Y,Z1/(X,Z) ~k[Y], so that p =(x,z) is a height 1 prime ideal of 4.
In D(A) we have np =div(x), and it can be proved that C(4) ~ Z/nZ (scc
[S2], p. 58). The relation xy = z" shows that A4 is not a UFD.

For those wishing to know more about UFDs, consult [K], [S2] and
[Fl.

Exercises to §20. Prove the following propositions.

20.1. (Gauss' lemma) Let 4 be a UFD, and f(X)=ao+a; X+ + &X"
€A[X7; say that f is primitive if the g.c.d. of the coefficients do,.... 4
is 1. Then if f(X) and g(X) are primitive, so is f(X)g(X).

20.2. If A is a UFD so is A[X] (use the previous question).

20.3. fdisa UFDand qy,...,q, are height 1 primary ideals then q,; NN ¢, isa
principal ideal.
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20.4. Let A be a Zariski ring (see §8) and A the completion of A. Then if 4 is a
UFD so is A (there are counter-examples to the converse).

20.5. Let A be an integral domain. We say that 4 is locally UFD if A, isa UFD
for every maximal ideal m. If 4 is a semilocal integral domain and A is
locally UFD, then A is a UFD.

20.6. Let R =), R, be a graded ring, and suppose that R, is a field. Set
m =P, R, If I is'a homogeneous ideal of R such that IR s principal
then there is a homogeneous element fel such that I = fR.

21 Complete intersection rings

Let (A, m, k) be a Noetherian local ring; we choose a minimal
‘basis X;,...,x, of m, where n=embdim 4 is the embedding dimension
. of A (see §14). Set E.=K, |, for the Koszul complex. The complex E, is
© determined by A up to isomorphism. Indeed, if x1,...,x, is another
minimal basis of m then by Theorem 2.3, there is an invertible n x n
matrix (a;;) over 4 such that x;= =Y a;x;. It is proved in Appendix C that
K. 1. can be thought of as the exterior algebra A (de; + - + Ae,) with
differential defined by d(e;) = x;. Similarly,
K, 1 .= N(Ae| +-+ Ae,) with d(e;)=x;.
- Now f(e)=> a;;e; defines an isomorphism from the free A-module
L Ae, + - + Ae, to Ae, + - + Ae,, which extends to an isomorphism f
of the exterior algebra, f commutes with the differential d, since for a
& generator ¢; of A (Ae| + -+ Aej) we have df(e)) =) a;x; = x; = fd(e}).
Therefore f:K, | ,—>K, . ,1san 1somorphlsm of complexes.
Since mH,(E)=0 by Theorem 164, H,(E.) is a vector space over
k= A/m. Set

g, =dim, H,(E.) for p=0,12,...;
hen these are invariants of the local ring A. In view of Hy(E,) = A/(x) =
A/m =k, we have ¢, = 1. In this section we are concerned with ¢;. If 4 is
egular then x,,...,x, is an A-sequence, so that ¢ =--=¢,=0, and
onversely by Theorem 16.5, ¢, =0 implies that A is regular.

Let us consider the case when A can be expressed as a quotient of a
regular local ring R; let 4 = R/a, and write n for the maximal ideal of R.
If a¢n? we can take xea—n?; then R'=R/xR is again a regular
ocal ring, and A = R'/a’, so that we can write A as a quotient of a ring
R’ of dimension smaller than R. In this way we see that there exist an
Xpression A = R/a of A as a quotient of a regular local ring (R, n) with
‘acn® Then we have m=m/a and m/m?=un/(a+n?)=n/n? so that
2/dim R = n = emb dim 4. Conversely, equality here implies that a = n
Let (R,n) be a regular local ring and 4 = R/a with a =n?; choose a



170 Regular rings

regular system of parameters (that is a minimal basis of n) &,,....¢&,.
Then the images x; of &; in A form a minimal basis x,,...,x, of m. Let

K¢.1...n10_’Ln —L, ——L —L,~0

be the Koszul complex of R and {. By Theorem 16.5, we know that this
becomes exact on adding --- — L, — k — 0 to the right-hand end, so that
K., ,1s a projective rgsolution of k as an R-module. Taking the tensor
product with 4 = R/a, we get the complex E. =K, , of A-modules.
Thus we have

H(E)=H/K,, ,®A4)=Torjk A) forall p>0.

However, from the exact sequence of R-modules 0 »a— R — A -0 we
get the long exact sequence

0 = Tor®(k, R) — Tor®(kl, 4) = k ®ga — k ®x R
—k®rA-0;

at the right-hand end we have k® R = k® A =k, so that
Tor¥(k, A) ~ k®ga = a/na.

Quite generally, we write u(M) for the minimum number of generators of
an R-module M. Then we see that

p(a) =dim H, (E.) = &,(A).

Theorem 21.1. Let (A,m k) be a Noetherian local ring, and A its
completion.

(i) e,(4) = sp(/T) for all p>0.

(i) &;(A) = embdim 4 — dim A.

(i) If R is a regular local ring, a an ideal of R and A ~ R/a, then

u(a) =dim R —embdim A + ¢,(A).
Proof. (i) is clear from the fact that a minimal basis of m is a minimal
basis of mA, so that applying ®,A4 to the complex E, made from A
gives that made from A. Then since 4 is A-flat, H,(E.)® A = H,(E.® A),
and mH ,(E.) =0 gives H,(E.)® A= H(E.).

(ii) If A is a quotient of a regular local ring, then as we have seen above,
there exists a regular ring (R,n) such that 4 = R/a with a =n?, so that
£,(A)=p(a) > hta=dimR —dim A =embdim A —dim A, where the
equality for ht a comes from Theorem 17.4, (i). Now A itself is not necessarily
a quotient of a regular local ring, but we will prove later (see §29) that A
always is, and we admit this in the section. Having said this, the two sides
of (ii) are unaltered on replacing A by A, and the inequality holds for A.

(ifi) Set n=rad(R). If acn? then, as we have seen above, u(a)=&,(A)
and dimR =embdim 4, so that we are done. If a¢tn? take xea—n’
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when we pass to R/xR and a/xR, each of dim R and u(a) decreases by 1, so
that induction completes the proof. ®

Definition. A Noetherian local ring A is a complete intersection ring
abbreviated to c.i. ring) if ¢,(4) = embdim 4 — dim A.

Theorem 21.2. Let A be a Noetherian local ring.

() Ais ci. <A is e

(ii) Let A be a c.i. ring and R a regular local ring such that A =R/a;
hen a is generated by an R-sequence. Conversely, if a is an ideal generated
y an R-sequence then R/a is a c.i. ring.
" (iii) A necessary and sufficient condition for 4 to be a ci. ring is that
the completion A should be a quotient of a complete regular local ring
R by an ideal generated by an R-sequence.
Proof. (i) is obvious.
(i) By Theorem 1, (iii), u(a)=dimR —embdim 4 4 &,(4), and by
[heorem 17.4, (i), ht a = dim R — dim 4, so that A is a c.i. ring is equivalent
hta = u(a). But by Theorem 17.4, (iii), this is equivalent to a being
nerated by an R-sequence.
(iii) The sufficiency is clear from (i) and (ii). Necessity follows from the
fact that A is a quotient of a complete regular local ring (see §29), together
with (i) and (ii). =

heorem 21.3. A c.i. ring is Gorenstein.
oof. If Aisci.thensois A, and if A is Gorenstein then so is A4, so that we
n assume that A4 is complete. Then we can write 4 = R/a, where R is
regular local ring and a is an ideal generated by a regular sequence. Since
is Gorenstein, 4 is also by Ex. 18.1. =
Thus we have the following chain of implications for Noetherian local
gs:
regular = c.i.=> Gorenstein=CM.
Let A4 be a c.i. ring, and p a prime ideal of A. If 4 is of the form
Rf(x,,...,x,), where R is regular and x,,..., X, is an R-sequence, then
ce A, can be written A = Rp/(x,,...,x,), where R, is regular and
»+-+»X, is an Rp-sequence, it follows that A, is again a c.i. ring. The
estion of deciding whether A, isstill a c.i. ring even if A is not a quotient
Q regular local ring remained unsolved for some time, but was answered
rmatively by Avramov [1], making use of André’s homology theory
fAo 1,2]. This theory defines homology and cohomology groups
#9.(A, B, M)and H "(A, B, M)for n = 0 associated with a ring 4, an A-algebra
= and a B-module M. The definition is complicated, but in any case these
#¢ B-modules having various nice functorial properties. If 4 is a




172 Regular rings

Noetherian local ring with residue field k then
A is regular<> H (A4, k, k) =0,
and
Ais cl<>H;(A,k k) =0;
for n > 3 the statements Hy(A, k, k) =0 and H,(A, k,k) =0 are equivalent,

Thus André homology is particularly relevant to the study of regular and
c.. rings.

Exercises to §21. Prove the following propositions.

21.1. Let R be a regular ring, [ an ideal of R, and let A = R/I; then the subset
{peSpec A[A, is c.i.} is open is Spec A (use Theorem 19.9).

21.2. Let A be a Noetherian local ring with embdim 4 =dim A + 1;if 4 is CM
then it is c.i.

21.3. Letkbeafield, andset A =k[X, ¥, Z /(X2 - YL Y* - 2>, XY, YZ, ZX);
then A is Gorenstein but not c.i.




8

Flatness revisited

“The main theme of this chapter is flatness over Noetherian rings. In
2 we prove a number of theorems known as the ‘local flatness criterion’
he main result is Theorem 22.3). Together with Theorem 23.1 in the
llowing section, this is extremely useful in applications.

In §23 we consider a flat morphism 4 — B of Noetherian local rings,
nd investigate the remarkable relationships holding between A4, B
nd the fibre ring F = B/m B. Roughly speaking, good properties of B
¢ usually inherited by A, and sometimes by F. Conversely, in order for
to inherit good properties of 4 one also requires F to be good.

In §24 we discuss the so-called generic freeness theorem in the
proved form due to Hochster and Roberts (Theorem 24.1), and
vestigate, following the ideas of Nagata, the openness of loci of points at
awhich various properties hold, arising out of Theorem 24.3, which states
at the set of points of flatness is open.

22 The local flatness criterion

heorem 22.1. Let A be a ring, B a Noetherian A-algebra, M a finite B-
odule, and J an ideal of B contained in rad (B); set M, = M/J"* 1M for
20.If M, is flat over A for every n >0, then M is also flat over A.
00f. According to Theorem 7.7, we need only show that for a finitely
enerated ideal I of A, the standard map u:1 ®,M — M is injective. Set
® M = M’; then M’ is also a finite B-module, and hence is separated for
the J-adic topology. Let xeKer(u); we prove that xe()J"M’ =0. For
any n>0, M,=M/J""'M =(IQ,M)®B/J"* ' =1®,M,, and the
induced map M, — M, is injective, by the assumption that M, is flat.
Then we deduce that xeJ"*'M’ from the commutative diagram

MM

l !

M,—M, =

Theorem 22.2. Let A be a ring, B a Noetherian A-algebra, and M
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a finite B-module; suppose that b is an M-regular element of rad(B),
Then if M/bM is flat over 4, so is M. \

Proof. For each i>0 the sequence 0—M/b'M —M/b'""'M —,
M/bM— 0 is exact, so that by Theorem 7.9 and an induction on i, every
M/b'M is flat over A. Thus we can just apply the previous theorem. m

Definition. Let A be a ring and [ an ideal of 4; an A-module M is said
to be I-adically ideal-separated f a®@M is separated for the I-adic
topology for every finitely generated ideal a of A.

For example, if B is a Noetherian A-algebra and IB < rad (B) then a
finite B-module M is I-adically ideal-separated as an A-module.

Let A be a ring, I an ideal of A and M an A-module. Set A, = A/["*},
M,=M/""'M for n>0 and gr(d)=@@,. """, eM)=
P oI"M/I"" ' M. There exist standard maps

Yl ) @y Mo — I"M/I" ' M for n >0,
and we can put together the y, into a morphism of gr(A4)-modules
7:81(A) @4, Mo —> gr(M).

Theorem 22.3. In the above notation, suppose that one of the following
two conditions is satisfied:

(«) I is a nilpotent ideal;
or (f) A is a Noetherian ring and M is [-adically ideal-separated. Then
the following conditions are equivalent.

(1) M is flat over 4;

(2) Tor$(N, M) =0 for every A,-module N;

(3) M, is flat over A, and I® M = IM,

(3') M, is flat over A, and Tor{(A4,, M)=0;

{4) M, is flat over A, and y, is an isomorphism for every n > 0;

(4') M, is flat over 4, and y is an isomorphism;

(5) M, is flat over A4, for every n = 0.

In fact, the implications (1)=>(2)<>(3)<>(3')=(4)=(5) hold without any
assumption on M.
Proof. First of all, let M be arbitrary.

(1)=(2) is trivial.

(2)=(3) If N is an 4,-module then we have

N®M=(N ®A0AO)®AM =N ®4,Mo,

and hence for an exact sequence 0— N, — N, —N3;—>0 of Ao~
modules we get an exact sequence
O=T0r‘14(N3,M)——>N1 ®A0MO '—’N2®AOM0——"
N3 ®A0M0—"O;



§22 The local flatness criterion 175

erefore M, is flat over A,. Also, from the exact sequence 0—[-—
— Ao —0 we get an exact sequence
0=Tor{(Ag, M) —> @M — M — M, -0,
o that IQM =1IM.
(3)<=>(3) is easy.
. (3)=(2) If N is an Aj,-module, we can choose an exact sequence of
A,-modules 0> R — Fo — N -0 with F, a free A,-module. From this
we get the exact sequence
Tor4(Fg, M)=0—Tor{(N,M) — R, M, — F,®,4,M

and since M, is flat over A, the final arrow is injective, so that
Tor{(N,M)=0

(3)=(4 By (2) we have Tor{(I[/I*, M)=0, so that from 012 —
—I/I*>0, the sequence 0—-I’@M —IQM —(I/I’)@M -0
s exact. From I@M=IM we get QM =I’M and (I//["))@M ~
M/I*M. Proceeding similarly, from 0— "*! — I" — ["/I"* ! - 0 we get
by induction I"*' @M =I""'M and (I"/["* )@ M ~I"M/I"*'M. (4) is
ust a restatement of (4).
(4)=(5) We fix an n > 0 and prove that M, is flat over 4,. Fori<n we
have a commutative diagram

(Ii+1/In+1)®M _ (1i+1/1")®M——>(Ii/li+l)®M—>0
“i+1l O‘il Vil

,0—>Ii+1/M"=Ii+1M/In+]M—)Ii/MnZIi/PH—‘M SN IiM/IH—lM—bO

with exact rows. By assumption y; is an isomorphism, and since o, , ; is an

somorphism (from 0 to 0), by downwards induction on i we see that o,
Oy_1,...,0; are isomorphisms. In particular,

: o (/") @M = 14,8,,M, = IM,,

0 that the conditions in (3) are satisfied by 4,, M, and I/I"**. Therefore

by (2)<=(3), we have Tor{"(N,M,)=0 for every A,-module N. Now if
¢ N is an A,-module then IN and N/IN are both A, ,-modules, and
0 IN — N — N/IN — 0 is exact, so that by induction on i we get finally
hat Tor#~(N, M,) =0 for all A,-modules N. Therefore M, is a flat 4,-
- module.
. Next, assuming either («) or (B) we prove (5)=>(1). In case («) we have
A=A, and M =M, for large enough n, so that this is clear. In case (f),
by Theorem 7.7, it is enough to prove that the standard map J:a @ M — M
$ injective for any ideal a of A. By hypothesis we have W "(a® M) =0,s0
that we need only prove that Ker (j) = I"(a® M) for all n > 0. For a fixed n,
1 by the Artin-Rees lemma, I* ~a = I"a for sufficiently large k > n. We now
- Consider the natural map
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a®M L@/ n )@ M~ (a/I"a) @ M = (a® M)/I"(a ® M).
Since M, _, is flat over A4,_, = A/I*, the map
(0/Fna) @M =(o/I*na)®,, M., —M,_,

is injective, so that from the commutative diagram

a@M L (o/IFra) @M
M — M, -y

we get Ker (j) = Ker(f) = Ker(gf) = I"(a® M). This is what we needed to
prove. B
This theorem is particularly effective when A4 is a Noetherian local ring
and I is the maximal ideal, since if 4, is a field, M, is automatically flat
over A4, in (3)—(4’). Also, in this case, requiring M, to be flat over 4, in
(5) is the same as requiring it to be a free 4,-module, by Theorem 7.10.
We now discuss some applications of the above theorem.

Theorem 22.4. Let (A, m) and (B,n) be Noetherian local rings, A and B
their respective completions, and A — B a local homomorphism.
(i) For M a finite B-module, set M = M ®jB; then
M is flat over A<M is flat over A<>M is a flat over 4.
(i) Writing M* for the (mB)-adic completion of M we have
M is flat over A<>M* is flat over A<>M* is flat over A.
Proof. (i) The first equivalence comes from the transitivity law for flatness,
together with the fact that B is faithfully flat over B; the second, from
the fact that both sides are equivalent to M/m"M being flat over A/m"
for all n>0.
(ii) All three conditions are equivalent to M/m"M being flat over 4/m”
for all n.

Theorem 22.5. Let (A,m,k) and (B,m, k') be Noetherian local rings,
A— B a local homomorphism, and u:M — N a morphism of finite
B-modules. Then if N is flat over A4, the following two conditions are
equivalent:

(1) u is injective and N/u(M) is flat over A;

(2) a:M ®,k —> N ®,k is injective.
Proof. (1)=>(2) is easy, so we only give the proof of (2)=-(1). Suppose that
xeM is such that u(x) = 0; then #(x)=0, so that X =0, in other words,
xemM. Now assuming xem"M, we will deduce xem"*'M. Let
{a;,...,a,} be a minimal basis of the A-module m”, and write x = Y a;yi
with y,e M; then 0= a,u(y,). Since N is flat over 4, by Theorem 7.6 there
exist ¢;;64 and z;eN such that

Y a,c;=0 forallj and u(y)=) c;z; foralli
i 7

)
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By choice of 4,,...,q, all the ¢;em, and hence u(y)emN and
i(y,)=0, so that y,=0, and y,emM. Therefore xem"*'M. We have
proved that xe(),m"M =0, and hence u is injective. Now from
0-M-—N—NuM)—-0 we get Tor{(k, Nu(M))=0, so that by
Theorem 3, N/u(M) is flat over 4. =

Corollary. Let A, B and A — B be as above, and M a finite B-module;
set B=B®,k= B/mB, and for x,,...,x,en write X; for the images in
B of x,;. Then the following conditions are equivalent:

(1) xy,...x, is an M-sequence and M, = M/> 1 x;M is flat over 4;

@ x,,...,X%, is an M ® k-sequence and M is flat over A.
Proof. (2)=-(1) follows at once from the theorem. For (1)=>(2) we must
prove that M;= M/(x; M + -+ x; M) is flat for i = 1,...,n; but if M, is flat
over A then by Theorem 2,s0is M;_,. =

Theorem 22.6. Let A be a Noetherian ring, B a Noetherian A-algebra, M
a finite B-module, and beB a given element. Suppose that M is flat over
A and that b is M /(P n A)-regular for every maximal ideal P of B; then b is
M-regular and M/bM is flat over A.

Proof. Write K for the kernel of M — M; then K = 0<>K, =0 for all P.
Hence b is M-regular if and only if b is Mp-regular for all P. Moreover,
according to Theorem 7.1, A-flatness is also a local property in both 4
and B, so that we can replace B by B, (for a maximal ideal P of B), A by

Ap., and M by M,, and this case reduces to Theorem 5. ®

Corollary. Let A be a Noetherian ring, B= A[X,,..., X,] the polynomial
ring over A4, and let f(X)eB. If the ideal of A generated by the coefficients of
f contains 1 then f is a non-zero-divisor of B, and B/f B is flat over 4. The
same thing holds for the formal power series ring B=A[X,,..., X, ].
Proof. The polynomial ring is a free A-module, and therefore flat; the formal
power series ring is flat by Ex. 7.4. Furthermore, for peSpecA, if B=
A[X,,...,X,] then B/pB=(A/p)[X,...,X,], and in the formal power
series case we also have B/pB=(A/p)[X,,...,X,] since p is finitely
generated. In either case B/pB is an integral domain, so that the assertion
follows directly from the theorem. m

Remark (Flatness of a graded module). Let G be an Abelian group,
R=P,cR, a G-graded ring and M = P, M, a graded R-module, not
necessarily finitely generated.
(1) The following three conditions are equivalent:

(a) M is R-flat;

) If ¥ —N-—>N —>N"—s-- is an exact sequence of
graded R-modules and R-linear maps preserving degrees, then & ® M is

exact:
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(¢) Tor®(M,R/H)= 0 for every finitely generated homogeneous ideg]
H of R. The proof is left to the reader as an exercise, or can be found i,
Herrmann and Orbanz [3]. Using this criterion one can adapt the proof
of Theorem 3 to prove the following graded version.

{2) Let I be a (not necessarily homogeneous) ideal of R. Suppose that

(i) for every finitely generated homogeneous ideal H of R, the R-moduyje
H®zM is I-adically separated;

(i) Mg = M/IM is R/I-flat;

(iii) Tor® (M, R/I) = 0.

Then M is R-flat.

As an application one can prove the following:

(3 Let A =P, A, and B=P,.,B, be graded Noetherian rings. Assume
that A,, B, are local rings with maximal ideals m, n and set M =m +
A +A,+, N=n+B;+B,+; let fr4A— B be a ring homo-
morphism of degree 0 such that f(m)cn. Then the following are
equivalent:

(a) B is A-flat;

(b) By is A-flat;

(¢} By is Ap-flat.

Exercises to §22. Prove the following propositions.

22.1. (The Nagata flatness theorem, see [N1], p. 65). Let (4, m, k) and (B, n, k') be
Noetherian local rings, and suppose that 4 ¢ B and that mB is an n-
primary ideal. We say that the transition theorem holds between A and Bif
1 (A/q)-15(B/mB) = I5(B/qB) for every m-primary ideal q of A. This holdsif
and only if B is flat over A.

22.2. Let(A, m)be a Noetherian local ring, and k — 4 a subfield. If x,, ..., x,em
is an A-sequence then x,,..., x, are algebraically independent over k, and
A is flat over C =k[x,,...,x,] (Hartshorne [2]).

22.3. Let (A, m, k) be a Noetherian local ring, B a Noetherian A-algebra, and M
a finite B-module. Suppose that mB < rad (B). If xem is both A-regular
and M-regular, and if M/xM is flat over A/xA then M is flat over A.

224. Let A be a Noetherian ring and B a flat Noetherian A-algebra; if [ and]
are ideals of 4 and B such that IB < J then the J-adic completion of B 1
flat over the I-adic completion of A.

23 Flatness and fibres
Let (4, m) and (B,n) be Noetherian local rings, and ¢:4A—B a local
homomorphism. We set F = B®,k(m) = B/mB for the fibre ring of @ over
m. If B is flat over A then according to Theorem 15.1, we have
(*) dimB=dimA+dimF.
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s the following shows, under certain conditions the converse holds.

Theorem 23.1. Let A, B and F be as above. If A4 is a regular local ring, B
Cohen-Macaulay, and dim B =dim 4 + dim F then B is flat over A4.
roof. By induction on dim A. If dim 4 = 0 then A is a field, and we are
done. If dim 4 >0, take xem —m? and set A= A/xA and B’ = B/xB.
y Theorem 15.1,

dimB <dimA'+dimF=dim4—1+dimF=dimB—1,
and using a system of parameters of B’ one sees that dim B’ > dim B—1,
o that
dim B’ =dim A’ + dim F =dimB — L.
One sees easily from this that x is B- regular and B’ is a CM ring. Hence
. by induction B’ is flat over A" Thus Torf (A/m B’} = 0; moreover, x is
$oth A-regular and B-regular, so that Tor{ (4/m, B) = Tor{(4/m, B).
herefore by Theorem 22.3, B is flat over 4. m
- We give a translation of the above theorem into algebraic geometry for
‘gase of application. (The language is that of modern algebraic geometry,
see for example [Ha], Ch. 2)

Corollary. Let k be a field, X and Y irreducible algebraic k-schemes, and
et /Y — X be a morphism. Set dim X = n, dim Y = m, and suppose that
he following conditions hold: (1) X is regular; (2) Y is Cohen—Macaulay;
3) f takes closed points of Y into closed points of X (this holds for
example if f is proper); (4) for every closed point xeX the fibre f~*(x)
s (m — n)-dimensional (or empty). Then f is flat.

roof. Let yeY be a closed point, and set x= f(y), A=0y, and
= 0y,. We have dimA4 =n, dimB=m, and since by Theorem 15.1
im B/m_ B >m —n, we get dim B/m B=m —n from (4). Therefore by
he above theorem B is flat over A4, and this is what was required to
rove. M

Theorem 23.2. Let ¢:A — B be a homomorphism of Noetherian rings,
and let E be an A-module and G a B-module. Suppose that G is flat over 4;
. then we have the following:
(i) if peSpec A4 and G/pG # 0 then
‘ “p(Assp(G/pG)) = Ass J(G/pG) = {p};

(i) Ass ((E®,G) = UpeAssA(E)ASSB(G/pG)'
‘ Proof . (i) G/pG =G ®,(A/p) is flat over A/p, and A/p is an integral
- domain, so that any non-zero element of A/p is G/pG-regular (see Ex. 7.5.).
- In other words, the clements of A—p are G/pG-regular. This gives
Ass 4(G/pG) = {p}. Also, if PeAssp(G/pG) then there exists £eG/pG such

- that anng(¢) = P, and then P A = ann ,(&)eAss ,(G/pG) = {p}.
(i) If peAss,(E) then there is an exact sequence of the form




180 Flatness revisited

0— A/p —E, and since G is flat the sequence 0—G/pG—Egg
is also exact; thus
Assp(G/pG) < Assg(E® G).

Conversely, if PeAss(E®G) then there is an yeE®G such that
anng(n)=P. We write n=)"1x,®y; with x;eE and y,eG, and set
E =2'; Ax;; then by flatness of G, we can view E'® G as a submodyle
E®G<cE®G. Since neE' ® G we have PeAssg(E'®G). Now E' i5 g
finite A-module, so that we can choose a shortest primary decomposition
of 0 in E', say 0=0,n--nQ,. Since E' can be embedded in (P(E/Q,),
if we set E; = E'/Q, then

Assy(E' ® G) = ) Assy(E;® G),

and therefore PeAssy(E;® G) for some i This E; is a finite A-module
having just one associated prime, sav p. We have peAss, (F') < Ass ,(E).
For large enough v we get p'E;=0, so that p"(E;®G)=0, and thus
p < Pn A. Moreover, an clement of A —p is Ej-regular, and hence also
E;® G-regular, so that finally p=PnA4. Now choose a chain of sub-
modules of Ej,

Ej=E,>E, > >5E=0

such that E;/E;, , ~ A/p; with p;eSpecA. Then also
E®QGoE,®G>2E®G=0,
with
(Ej®G)/(Ej+1 ®G)~ (A/Pj)®G = G/ij,
s0 that Assg(E;® G)c | );Assg(G/p,G). Therefore PeAssy(G/p,G) for
some j, but by (i), PnA =p;, so that p; =p and PeAssz(G/pG). ®

Theorem 23.3. Let (A, m, k) and (B,n, k') be Noetherian local rings, and
¢:A —> B a local homomorphism. Let M be a finite A-module, N a finite
B-module, and assume that N is flat over 4. Then

depthy(M ®, N) = depth , M + depthgz(N/mN).

Proof. Let x,,...,x,em be a maximal M-sequence, and y,,...,J€n
maximal N/mN-sequence. Writing x; for the images of x; in B, let us
prove that x/,...,x., yi,...,y, is a maximal M ® N-sequence. Now
X},...,x. is an M ® N-sequence, and if we set M, = M/} x;M then

meAss,(M,), and (MON)Y S x(M®N)=M,®N.
i=1

Moreover, by the coroliary of Theorem 22.5, y, is N-regular, and
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N,=N/y;N is flat over A, so that from the exact sequence 0—
NN — N, -0 we get the exact sequence 0= M, QN — M, ®N
—> M, ® N, - 0. Proceeding in the same way we see that y,,..., y, is an
M, ® N-sequence. After this we need only prove that the B-module.

MON) QY xi(MRN)+ Y y(MON))=M,®N,

has depth 0, that is neAssg(M,® N,); however, meAss,(M,) and
neAssg(N /mN,), so that this follows at once from the previous theorem.

Corollary. Let A — B be a local homomorphism of Noetherian rings as
in the theorem, and set F = B/mB. Assume that B is flat over A. Then
(i) depth B = depth A + depth F;
(ii) B is CM<4 and F are both CM.
Proof. (i)is the case M = 4, N = B of the theorem. From (i) and (*) we have
dim B — depth B = (dim A — depth 4) + (dim F — depth F)
and in view of dim 4 > depth 4 and dim F > depth F, (ii) is clear. =

Theorem 23.4. Let A— B be a local homomorphism of Noetherian
local rings, set m =rad(A) and F = B/mB. We assume that B is flat over 4;
then

B is Gorenstein<>A4 and F are both Gorenstein.

Proof (K. Watanabe [1]). By the corollary just proved, we can assume
that A, B and F are CM. Set dim A =r and dim F =, and let {x,,...,x,}
be a system of parameters of 4, and {y,,...,y,} a subset of B which
reduces to a system of parameters of F modulo mB. Then as we have seen
in the proof of Theorem 3, {x,...,X,, ¥y,...,Vs} is a B-sequence, and
therefore a system of parameters of B, and B= B/(x, y)B is flat over
A= A/(x)A. Thus replacing A4 and B by A and B, we can reduce to
the case dim 4 = dim B = 0. Now in general, a zero-dimensional local ring
(R, M) is Gorenstein if and only if Homg(R/M, R) = (0: M), is isomorphic
to R/M. Now set
rad(B)=n, rad(F)=n/mB=# and (Om),=1I.

Then I is of the form I ~(A4/m)' for some ¢, and (0:mB)y = IB ~(A/m)' ®
B =F', Furthermore, we have (0:n)z = (0:1),5 ~ ((0:7)F)", and hence if we
set(0:t), ~ (F/it)* = (B/n)* then (0:n) ~ (B/n)™. Therefore

Bis Gorenstein<estu = 1<t =u= 1< A are F are Gorenstein. ®

Theorem 23.5. If A is Gorenstein then so are A[X] and A[X].
Proof. We write B for either of A[X] or A[X], so that B is flat over A.
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For any maximal ideal M of B we set MnA=p and 4,/pA, = k(p), Iy
case B= A[X], the local ring B, is a localisation of B®, A4, = A,[x),
and the fibre ring of A — B,, is a localisation of x(p)[X], hence
regular. In case B= A[X] then XeM, and p a maximal ideal of 4, g,
that k(p) = A/p and

B®,xlp) = (A/m)[X] = x(®)[X].
This is a regular local ring, and is the fibre ring of A, — B,,. Thus in
either case B,, is Gorenstein by the previous theorem. m

Theorem 23.6. Let A be a Gorenstein ring containing a field k; then for
any finitely generated field extension K of k, the ring A ®, K is Gorenstein.
Proof. We need only consider the case that K is generated over by one
element x. If x is transcendental over k then A ® K is isomorphic to a
localisation of A®k[X]=A[X], and since A[X] is Gorenstein, so is
A® K. I x is algebraic over k then since K ~ k[ X']/(f(X)) with f(X)ek[X]
a monic polynomial, we have

AQK = ALX]/(f(X)),
now A[X] is Gorenstein and f(X) is a non-zero-divisor of A[ X7, so that
we see that A® K is also Gorenstein. =

Remark. Theorems 5 and 6 also hold on replacing Gorenstein by
Cohen—Macaulay; the proofs are exactly the same. For complete inter-
section rings the counterpart of Theorem 4 also holds, so that the analogs
of Theorems 5 and 6 follow; the proof involves André homology
(Avramov [1]). As we see in the next theorem, a slightly weaker form of
the same result holds for regular rings.

Theorem 23.7. Let (4, m,k) and (B,n, k') be Noetherian local rings, and
A—> B a local homomorphism; set F = B/mB. We assume that B is flat
over A.

(i) If B is regular then so is A.

(ii) If A and F are regular then so is B.

Proof. (i) We have Tor#(k, k)®,B = Tor®(B®k, B®k), and the right-
hand side is zero for i > dim B. Since B is faithfully flat over A, we have
Tor(k, k) =0 for i >0, so that by §19, Lemma 1, (i), proj dim 4k < 0, and
since projdim k = gldim A4, by Theorem 19.2, 4 is regular.

(i) Set r=dim A4 and s=dimF. Let {x,,...,x,} be a regular system
of parameters of 4, and {y,,...,y} a subset of n which maps t0 a
regular system of parameters of F. Since 4 —> B is injective, we can view
A as a subring AcB. Then {x,...,X,,y;,...,ys generates 1 but
dim B = r + s, so that B is regular. W
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» Remark. In Theorem 7, even if B is regular, F need not be. For example,
‘ Jet k be a field, x an indeterminate over k, and B=k[x]y, A=
" k[x*]2 < B: then F = B/x*B=k[x]/(x*) has a nilpotent element. By
Theorem 1, or directly, we see that B is flat over A. (From a geometrical
' point of view, this example corresponds to the projection of the plane
curve y = x? onto the y-axis, and, not surprisingly, the fibre over the origin
is singular.)

Consider the following conditions (R;) and (S;) for i=0, 1, 2,... on a
~ Noetherian ring A:

(R;) Ap is regular for all PeSpec A with ht P < ;

(S;) depth Ap = min (ht P.i) for all PeSpec A.

(So) always holds. (S;) says that all the associated primes of A are
minimal, that is 4 does not have embedded associated primes. (R,) + (S;)
is the necessary and sufficient condition for A to be reduced. (S,) for all
i >0 is just the definition of a CM ring.

For an integral domain 4, (S,) is equivalent to the condition that every
prime divisor of a non-zero principal ideal has height 1. The characterisa-
tion of normal integral domain given in the corollary to Theorem 11.5
can be somewhat generalised as follows.

. Theorem 23.8 (Serre). (R,) + (S,) are necessary and sufficient conditions
' for a Noetherian ring A to be normal.
« Proof. We defined a normal ring (see §9), by the condition that the
localisation at every primeis an integrally closed domain. The conditions
¢ (R;) and (S,) are also conditions on localisations, so that we can assume
that A is local.
¢ Necessity. This follows from Theorems 11.2 and 11.5.
- Sufficiency. Since A satisfies (R,) and (S,) it is reduced, and the shortest
primary decomposition of (0) is (0) = P, n+-n P,, where P, are the minimal
primes of A. Thus if we set K for the total ring of fractions of A4, we have
K=K, x - x K,, with K; the field of fractions of A/P,.
First of all we show that A4 is integrally closed in K. Suppose that we
have a relation in K of the form
(a/b)" + cla/by" "1+ +¢,=0,
with a, b, ¢,,...,c,€4 and b an A-regular element. This is equivalent to
a relation

n
a"+ > ¢a" b =0
1

in A. Let PeSpecA be such that ht P =1; then by (R,), 4p is regular,
and therefore normal, so that apebpAp, where we write ap, bp for the
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images in A, of a, b. Now b is A-regular, so that by (S,), all the prime
divisors of the principal ideal bA have height 1; thus if bA=q,n'Nq,
is a shortest primary decomposition and we set p, for the prime divisor
of q;, then aebA, N A =q; for all i, and hence aebA, so that a/bed,
Therefore A is integrally closed in K; in particular, the idempotents e, of
K, which satisfy e? — e; =0, must belong to A4, so that from 1 =}e; and
e;e; =0 for i #j we get
A=Aey X x Ae,.

Now since A4 is supposed to be local, we must have r = 1, so that 4 is an
integrally closed domain. =

Theorem 23.9. Let (4, m) and (B, n) be Noetherian local rings and A — B
a local homomorphism. Suppose that B is flat over 4, and that i>01isa
given integer. Then

(i) if B satisfies (R;), so does A;

(ii) if both 4 and the fibre ring B®,k(p) over every prime ideal p of
A satisfy (R;), so does B.

(iii) The above two siatements also hold with (S;) in place of (R).
Proof. (1) For peSpec 4, since B is faithfully flat over A, there is a prime
ideal of B lying over p; if we let P be a minimal element among these
then ht(P/pB) =0, so that ht P =htp. Hence htp <i= B, is regular, so
that by Theorem 7, A, is regular. Also, by the corollary to Theorem 3,
depth B, = depth 4, so that one sees easily that (S;) for B implies (S,) for 4.

(ii) Let PeSpecB and set PnA=p. If ht P<i then we have htp <i
and ht(P/pB) <1, hence A, and Bp/pBp are both regular, so by Theorem
7, (i1), Bp 1s regular. Hence B satisfies (R;). Moreover, for (S;) we have

depth B, = depth 4, + depth Bp/pB,
> min(ht p, i) + min(ht P/pB, i)
zmin(htp + ht P/pB,i)=min(ht P,i). m

Corollary. Under the same assumptions as Theorem 9, we have

(i) if B is normal (or reduced) then so is A4;

(ii) if both A and the fibre rings of A — B are normal (or reduced) then
so is B.

Remark. 1f A and the closed fibre ring F = B/mB only are normal, then
B does not have to be; for instance, there are known examples of normal
Noetherian rings for which the completion is not normal.

Finally, we would like to draw the reader’s attention to the following
obvious, but useful, fact concerning the fibre ring. Let ¢':A’ — B’ be a
ring homomorphism and I an ideal of A’; we set A=A'/l, B =B/IB,
and write ¢: A — B for the map induced by ¢'. If p’eSpecA’ is such that
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I cp’, we set p =p’/I; then the fibre of ¢’ over p’ coincides with the fibre
of ¢ over p. To see this,

B ®,k(p')= B ®,(4/p); = B&4(A/p), = B&,K(p).

It follows from this that if all the fibre rings of ¢’ have a good property,
the same is truc of ¢. For an example of this, see Ex. 23.2.

Exercises to §23. Prove the following propositions.

23.1. If A is a Gorenstein local ring then all the fibre rings of A — A are again
Gorenstein; the same thing holds for Cohen—Macaulay.

23.2. 1f A is a quotient of a CM local ring, and satisfies (S,), then the completion
A also satisfies (S,). In particular, if 4 does not have embedded associated
primes then neither does A.

23.3. Give another proof of Theorem 4 along the following lines:
(1) Using Exti,(4/m, A)®4B = Exti(F, B), show that B Gorenstein
implies A Gorenstein. (2) Assuming that A is Gorenstein, prove that F is
Gorenstein if and only if B is. Firstly reduce to the case dim A = 0. Then
prove that Exty(F, B)=0for i>0 and ~ F for i=0, and deduce that if
0—B—1I is an injective resolution of B as a B-module then 0—
F —Hom,(F,I')is an injective resolution of F as an F-module, so that,
writing k for the residue field of B, we have Extj(k, B) = Exti(k, F) for all i.

24 Generic freeness and open loci results

Let 4 be a Noetherian integral domain, and M a finite 4-module.
Then there exists 0 # ae 4 such that M, is a free 4,-module. This follows
from Theorem 4.10, or can be proved as follows: choose a filtration
M=M,>M,>>M,=0
such that M, /M,~ A/p,, with p,eSpecA4; then if we take a#0
contained in every non-zero p; we see that every (M, _,/M,), is either zero
or isomorphic to A4,, so that M, is a free 4,-module.
For applications, we require a more general version of this, which does
not assume M to be finite. We give below a theorem due to Hochster and
Roberts [1]. First we give the following lemma.

Lemma. Let B be a Noetherian ring, and C a B-algebra generated over B
by a singlc element x; let E be a finite C-module, and F < E a finite
B-module such that CF = E. Then D = E/F has a filtration
0=Gyc G, ccGcG,,c~<D with D=|)G;
i=0
such that the successive quotients G;, /G, are isomorphic to a finite
number of finite B-modules.
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Proof. Set

Gi=F+xF+-+x'FcE, G;=G/F,
and

F,={feF|x'"'feG,} cF.
Then0c G, - = G, = Gy, - isafiltration of D,and G, , /G, ~ FIF;
on the other hand, Fyc F,c-cF,c is an increasing chain of
B-submodules of F, so must terminate. =

Theorem 24.1. Let A be a Noetherian integral domain, R a finitely
generated A-algebra, and S a finitely generated R-algebra; we let E be
finite S-module, M < E an R-submodule which is finite over R, and N c E
an A-submodule which is finite over A, and set D = EAM + N). Then there
exists 0 #£ aeA such that D, is a free 4,-module.
Proof. Write A’ for the image of A in R, and suppose that R=
A'luy,...,w,]; similarly, write R’ for the image of R in S, and suppose
that S=R'[v,,...,v,]. We work by induction on h+k; if h=k =0 then
D is a finite A-module, and we have already dealt with this case.

Write R;= A'[uy,...,u;] for 0<j<h, and S;=R'[v,,...,v;] for
0<sj<k

Suppose first that k> 0; set M+ N=M' < E. We have a filtration

SoMcS M c-acSM=SM cE,

the successive quotients of which are SoM', S, M'/S,M’',...,S,_ M/
Se M, SM'/S, _ M’, E/SM’'. We can apply the induction hypothesis
to each of these except the last two. By virtue of the lemma, S, M'/S, - M’
has a filtration with (up to isomorphism) just a finite number of finite
S, - ;-modules appearing as quotients, and so we can apply the induction
hypothesis again. For the final term, write E' = E/SM’, and let ¢,...e,
be a set of generators of E' over S; write E,_, =S,_,e; + "+ Sx~1€n-
Then SE,_, = F/, so that the lemma again gives a filtration of E’ with
essentially finitely many finite S, _ ;-modules appearing as quotients, and
we can apply the induction hypothesis to this term also.

If k=0 then E is a finite R-module, and replacing E by E/M we can
assume that M = 0. The preceding proof then applies almost verbatim to
this case, with R, instead of S;. =

Theorem 24.2 (topological Nagata criterion). Let 4 be a Noetherian ring,
and U < Spec A4 a subset. Then the following two conditions are necessary
and sufficient for U = Spec 4 to be open.

(1) for P, QeSpec A, PeU and P2 Q=0¢eU;

(2) if PeU then U contains a non-empty open subset of V(P).
Proof. Necessity is obvious, and we prove sufficiency. Let Vi,..
the irreducible components of the closure of U¢ = Spec 4 — U, and let P;

LV be
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be their generic points. If P,eU then by (2) there is a proper closed subset
W of V; such that Un ¥V, =W, and so U< WuU(| J;+, V;), which contra-
- dicts the definition of V;. Thus P;¢U, so that by (1), V; < U* for all i and
# therefore U is closed. =

& Theorem 24.3. Let A bea Noetherian ring, B a finitely generated A-algebra,
L and M a finite B-module. Set U= {PeSpecB|M, is flat over A};
then U is open in Spec B.

Proof. We verify the conditions (1) and (2) of Theorem 2.

(1) If P> Q are prime ideals of B then for an A-module N we have
N®M,=(N®;Mp)®s,By, so that if M, is flat over A then so is M.
(2) Let PeU and p=PnA; set A= A/p. Now if QeV(P), we have
] pB, = rad(Byp), and hence by Theorem 22.3, M, is flat over A4 if and only
ifMQ/pMQ is flat over 4 and Tor{(My, A)=0. Now Tor{(Mp, A)=0,
and the left-hand side is equal to Tor{(M, A)®zB,. By computing the
r by means of a finite free resolution of A4 over A, we see that
§ Tor{(M, A) is a finite B-module, so that there is a neighbourhood W
of P in SpecB such that Tor{(Mg,A)=0 for QeW. Moreover, by
Theorem 1, there exists ae A — p such that M, /pM, is a free A,-module,
so that if Q¢ V(aB), then My/pM,, is flat over A. Thus the open set
{(WnV(P))— V(aB) of V(P) is contained in U. =

Remark. If A is Noetherian and B is a finitely generated A-algebra which
is flat over A4 then it is also known that the map Spec B — Spec A is open;
see [M], p. 48 or [G2], (2.4.6).

~ Let A be a ring, and P a property of local rings; we define a subset
P(4) = Spec A by P(A)= {peSpec A|P holds for 4,}. For example, if
P = regular, complete intersection, Gorenstein or CM we write Reg(A4),
CI(A), Gor (4) or CM (4) for these loci. The question as to whether P(A)
i8 open is an interesting and important question. For Reg(A4) this is a
classical question, but for the other properties the systematic study was
initiated by Grothendieck.

The following proposition is called the (ring-theoretic) Nagata criterion
for the property P, and we abbreviate this to (NC).

£ (NC): Let A4 be a Noetherian ring. If P(4/p) contains a non-empty open
subset of Spec (A4/p) for every peSpec A, then P(4) is open in Spec A.
The truth or otherwise of this proposition depends on P; in the
remainder of this section we discuss some P for which (NC) holds. In
Ex. 24.2 and Ex.24.3 we illustrate how (NC) can be applied to prove
Openness results.

':Theorem 24.4 (Nagata). (NC) holds for P =regular.
Proof. Let U= Reg(A4). A localisation of a regular local ring is again
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regular, so that U satisfies condition (1) of Theorem 2. We now check
condition (2). If PeU then A4, is regular, so that we can take x,,...,x,eP
to form a regular system of parameters of 4, (where n = ht P). Then there
exists a neighbourhood W of P in Spec A such that
PAg=(xy,....x,)Aq

for all QeW. (In fact, if aeA is an element not contained in P, but
contained in every other prime divisor of (xi,...,x,) then PA, =
(x1,...,x,)4,.) Morcover, by the hypothesis in (NC) there exists a
neighbourhood W’ of P in V(P) such that A,/PA, is regular for Qe W’
Then A, is regular for Qe W' nW, so that W AW cU. =

Theorem 24.5. (NC) also holds for P = CM.
Proof. As with the previous proof, we reduce to checking condition (2)
of Theorem 2. Let PeCM(A). If we take acA — P and replace A by 4,
then we are considering a neighbourhood of P in Spec A4, so that we will
refer to this procedure as ‘passing to a smaller neighbourhood of P”. Since
Ap is CM, if ht P =n we can choose an Ap-sequence y,,...,y,eP. One
sees easily that after passing to a smaller neighbourhood of P, we can
assume that

(@) yy,...,y, 1s an A-sequence; and

B I=(y,,...,y,)A is a P-primary ideal.
Then for QeV(P), it is equivalent to say that 4, is CM or that A,/I4,
is CM. Thus replacing A by A/I we can assume that 0 is a P-primary ideal.
Then P" =0 for some r > 0. Now consider the filtration 0c P "' <
P< A of A. Each P//P'*! is a finite 4/P-module, but A/P is an integral
domain, so that passing to a smaller neighbourhood of P we can assume
that P//P"** is a free A/P-module for 0 <i<r. It is then easy to see that
if x;,...,x,€4 is an A/P-sequence, it is also an A-sequence. However,
according to the hypothesis in (NC), passing to a smaller neighbourhood
of P, we can assume that A/P is a CM ring. Then for QeV(P) the ring
AQ/PAQ is CM, so that from what we have said above,

depth A, > depth A,/PA, = dim A,/PA, =dim A,

and A, isCM. =

Let A be a Noetherian ring and I an ideal of A; we set B= A/l and
write Y for the closed subset V(I) = Spec A. Let M be a finite A-module.
We say that M is normally flat along Y if the B-module gr(M)=

» o IM/I'**M is flat over B. If B is a local ring, this is the same a3
saying that each I'M/I'*'M is a free B-module. Normal flatness 1s a0
important notion introduced by Hironaka, and it plays a leading role 10
the problem of resolution of singularities; we have used it in the above
proof in the statement that if P is nilpotent and 4 is normally flat along
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y(P) then an A/P-sequence is an A-sequence. However, in this book we
4o not have space to discuss the theory of normal flatness any further,
and we refer to Hironaka [1] and [G2], (6.10).

' heorem 24.6. (NC) holds for P = Gorenstein.
Proof. Once more we reduce to verifying condition (2) of Theorem 2.
Suppose that PeGor(4); if ht P=n then since Ap is CM, we can take
X1,.--» X,€P forming an Ap-sequence. Passing to a smaller neighbour-
hood of P, we can assume that x,...,Xx, is an A-sequence. Moreover,
k replacing 4 by 4/(x,,..., x,) we can assume that ht P = 0. In addition, we
can assume that P is the unique minimal prime ideal of A. Since A, is a
zero-dimensional Gorenstein ring, we have
Exti(A/P, A)®,Ap = ExtLP(K(P), Ap)=0
and
Hom ,(4/P, A)®4Ap = Hom,, (k(P), Ap) = K(P).
Thus passing to a smaller neighbourhood, we can assume that Ext}(4/P,
* A)=0 and Hom,(4/P, A)~ A/P. In addition, as in the proof of the
- previous theorem, we can assume that P{/Pi*! is a free A/P-module for
- i=0,...,r—1, where P"=0. Then using
0-PYPi*! — P/PI*! — P/PI-0,
we get by induction that Extli(P,A4)=0; from this it follows that
Ext4(4/P,A)=0, and in turn by induction that Ext(P, 4)=0, so that
Ext}(4/P, A) = 0. Proceeding in the same way we see that Ext),(4/P, 4) =
0 for every i > 0. If we take an injective resolution 0-> A4 — I" of A as an
A-module, and consider the complex obtained by applying Hom 4,(4/P, —)
to it, from what we have just said we obtain an exact sequence
0—A/P — Hom ,(A/P,I'), and this is an injective resolution of A/P as
an A/P-module. The same thing holds on replacing 4 by A, for Qe V(P),
and then setting k= x(Q), we get Ext;Q/P alk, Ag/PAg) = Extia(k, Ap).
Thus it is equivalent to say that A, is Gorenstein or that Ay/PA, is
Gorenstein. Therefore from the hypothesis in (NC) we have that
Gor(A4)n V(P) contains a neighbourhood of P in V(P). m

The above proof is due to Greco and Marinari [1]. Their paper also
proves that (NC) also holds for P = complete intersection.

Exercises to §24. Prove the following propositions.

24.1. Let A be a Noetherian ring, and I an ideal of A; assume that I" =0, and
that I'/I'* 1 is a free A/I-module for 1 <i<r. Then for x,,...,x,E4, it is
equivalent for (x,,...,x,) to be an A-sequence or an A/I-sequence.

24.2. If A is a quotient of a CM ring R then CM(A) is open in Spec A.
24.3. If A is a quotient of a Gorenstein ring then Gor(A) is open in Spec A.
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Derivations

This chapter can be read independently of the preceding ones; the main
themes are derivations of rings and modules of differentials. The results
of this chapter will be applied in the proof of the structure theorem for
complete local rings in the next chapter, but in addition derivations and
modules of differentials have an important influence on properties of rings,
for example via the connection with regularity.

In §25 we discuss the general theory of modules of differentials, and
also prove the Hochschild formula for derivations of rings in characteristic
p. §26 is pure field theory; Theorem 26.8, which states that a p-basis
of a separable extension is algebraically independent, is taken from
Matsumura [3]. The terminology O-etale is due to André, and corresponds
to ‘formally etale for the discrete topology’ in EGA. In §27 we treat the
higher derivations of Hasse and F. K. Schmidt, concentrating on the
extension problem which they did not treat, in a version due to author.

25 Derivations and differentials

Let 4 be a ring and M an A-module. A derivation from A to M
isamap D: A — M satisfying D(a + b) = Da + Dband D(ab) = b Da + aDb;
the set of all these is written Der(4, M). It becomes an 4-module in a
natural way, with D+ D’ and aD defined by (D + D')a= Da+ D'a and
(aD)b = a(Db).

If 4 is a k-algebra via a ring homomorphism f:k —» 4, we say that D is
a k-derivation, or a derivation over k, if Do f = 0; the set of all k-derivations
of Ainto M is written Der, (A4, M). It is an A-submodule of Der (4, M). Since
1:1 =1, for any DeDer (A, M) we have D(1) = D(1) + D(1), so that D(1) =0,
and so viewing A4 as Z-algebra we have Der (4, M) = Der,(4, M).

In the particular case M = A, we write Der,(4) for Der,(4, A). If D,
D'eD,(A), we can compose D and D’ as maps A — A, and it is easy 10 se€
that the bracket [D, D] = DD’ — D'D is again an element of Der,(A), and
that Der,(A4) becomes a Lic algebra with this bracket.

Quite generally, for DeDer(4, M) and acA one sees at once that
D(a") = na" "' Da. Hence if A is a ring of characteristic p we have D(a”) = 0.

100
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Also, in general we have a Leibnitz formula for powers of D,
5oiny L .

Dn(ab) = Z ( ; )D‘a'~D"_'b;

i=0
if A has characteristic p then this reduces to D?(ab) = DPa'b + a- Db, so
that also D?eDer (A).
Let k be a ring, B a k-algebra, and N an ideal of B with N> =0; set
A= B/N. The B-module N can in fact be viewed as an A-module. In this
situation, we say that B is an extension of the k-algebra 4 by the A-module
N; (note that B does not contain A, so that this is a different usage of
extension). We write this extension as usual in the form of an exact sequence

0->N—->B-25450.

We say that this extension is split, or is the trivial extension, if there exists
a k-algebra homomorphism ¢@:A—B such that fep=1, (the
identity map of A). Then we can identify A and ¢(A4), and we have
B=A®N as a k-module. Conversely, starting from any k-algebra 4 and
an A-module N, we can make the direct sum A @ N of k-modules into a
trivial extension of 4 by N, by defining the product
{a,x)(d,x')=(ad,ax’' + a'x) for aq,a’eA and x,xeN.
In this book, we will write A% N for this algebra.
. In general, given a commutative diagram in the category of k-algebras

B—— 4

8 where we think of f as being fixed, we say that h is a lifting of g to B.
}. Write N for the ideal Ker f of B. If h':C — B is another lifting of g, then
B h— I is a map from C to N. If N2=0 then N is an f(B)-module, and
& moreover, by means of g: C — f(B) = A, we can consider N as a C-module.
;.Then it is easy to see that h— h':C — N is a k-derivation of C to the C-
» module N. Conversely, if DeDer,(C, N) then h + D is another lifting of g
to B.

i Let k be a ring and A a k-algebra, and write .# , for the category of
A-modules. We have a covariant functor M— Der, (4, M) from .# 4 to itself,
f- Which turns out to be a representable functor. In other words, there exists
'_‘v; an A-module M, and a derivation deDer,(4, M) with the following
universal property: for any A-module M and any DeDer,(4, M), there
exists a unique A-linear map f: M, — M such that D = fod. We are now
¢ going to prove this. Firstly, define y:4®,A4 — k by

Bx @ y) = xy;
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then p is a homomorphism of k-algebras. Set
I=Kery, Qu=I/I> and B=(A®, Ayl
then p induces y':B — A, and

0—>QA/k—->B—£—>A—>O

is an extension of the k-algebra 4 by Q,,; this extension splits, and in
fact defining /;:4 — B for i=1,2 by

M@=a®1modI* and 4,(a)=1®amodI?
we get two liftings of 1,:4 — A, Hence d =1, — 4, is a derivation of
A to Q. Now we prove that the pair (Q,,,d) satisfies the conditions
for the above (M,,d). If DeDer,(A4, M) and we define ¢:A®, A —> 4% M
by ¢(x®y)=(xy,xDy) then ¢ is a homomorphism of k-algebras,
and

M(Z X ®y)= inyi = 0=><P(Z x;®y)=(0, inDJ’i);
hence ¢ maps I into M. Now M? =0, so that we finally get f:I/I?>=
Qu — M. For ae4 we have

fda)= fl®a—a®1mod ) =¢p(l1®a)—pla®1)

=Da—a-D(1) = Da,

so that D= fod. Moreover, Q ,, has the A-module structure induced by
multiplication by a® 1! in A®A (or multiplication by [®a; since
a®1—1®ael, they both come to the same thing), thus if
E=Yx,®y, modI’eQ,, then af=Yax,®ymodI? and f(af)=
Y ax;Dy; = af(&), so that f is A-linear. We have

a®d =@RN1®d —d®1)+ad ®1,
sothatifw =) x;® y;el then wmod I? = ¥ x;dy;. Hence Q) is generated
as an A-module by {dalacA}, so that the uniqueness of a linear map
J Qup — M satisfying D = f=d is obvious.

The A-module Q,, which we have just obtained is called the module of
differentials of A over k, or the module of Kahler differentials, and for
acA the element daeQ,,, is called the differential of a. We can write d 4
for d to be more specific. From the definition, we see that

Dery(A, M) ~ Hom ,(Q,,;, M).

Example. If 4 is generated as a k-algebra by a subset U — A4 then Q1
generated as an A-module by {dalacU}. Indeed, if acA4 then there
exist a;,cU and a polynomial f(X)ek[X,,...,X,] such that a=
flay,...,a,), and then from the definition of derivation we have

da=3 fAay,...,a,)da, where f;=0f/0X,
1
In particular if A=k[X,,...,X,] then Q= AdX, + - + AdX,, and
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dX,,...,dX, are linearly independent over A; this follows at once from
- the fact that there are D;eDer,(A4) such that D, X;=§;;.

We say that a k-algebra A is O-smooth (over k) if it has the
following property: for any k-algebra C, any ideal N of C satisfying
< N2 =0, and any k = algebra homomorphism u: 4 — C/N, there exists a
fting v:A — C of u to C, as a k-algebra homomorphism. In terms of
diagrams, given an commutative diagram

A——>C/N

I I

k———»C’

~ there exists v such that

A—"5C/N

I

k — C,

s commutative. Moreover, we say that A4 is O-unramified over k (or O-neat)
there exists at most one such v. When A is both 0-smooth and 0-
nramified, that is when for given u there exists a unique v, we say that A is
-etale. The condition for A to be O-unramified over k is that Q,, = 0:
ufficiency is obvious, and if we recall that in the construction of Q 4, we had
= A, — 44, necessity is clear.

If Ais a ring and § < A is a multiplicative set then the localisation Ag
s O-etale over A. This follows from the fact (Ex. 1.1) that if xeC is a unit
modulo a nilpotent ideal, then it is itself a unit. We leave the details to
‘ he reader.

| Theorem 25.1 (First fundamental exact sequence). A composite k-1,

A-2B of ring homomorphisms leads to an exact sequence of B-
modules

@ B
) Qi ®B— Qg —Qp -0,

Wwhere the maps are given by a(d ,;,a ®b) = bdgyg(a) and B(dg,b)=dg b
or ae A and beB. If moreover B is 0-smooth over A4 then the sequence

2 0-Q,,® B — Qpy — Qp,4 0,
btained from (1) by adding 0 —at the left, is a split exact sequence.

Proof. In order for a sequence N'——N ——>N" of B-modules to be
xact, it is sufficient that for every B-module T, the induced sequence

Homy(N', T) <— Hom(N, T) - Hom,(N", T)
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is exact. Indeed, taking T' = N”, we get o* f*(11) = 0, and therefore fx =
and taking T = N/Ima, we see easily that Ker f =Ima. From this, tq
prove that (1) above is exact, it is enough to show that for any B-module
T,
(3) Der,(A, T)«—— Der,(B, T)«<— Der (B, T)« 0
is exact, but this is obvious.
Now suppose that B is 0-smooth over A. Choose DeDer,(4, T) and
consider the commutative diagram
B—'B
4 [ with g(a) = (ga, Da).
A—2 5 BsT
Then by assumption, there exists h:B — B+ T which can be added to
the diagram, leaving it commutative. If we write h(b)=(b,D’b) then
D":B—T is a derivation of B such that D= D’°g, and D’ corresponds
to a B-linear map o':Qg, — T. Now take T to be Q,, ® B, and define
D by D(a)=d,,(a)® 1, so that D = D'°g implies that «’'a = 1. Thus (2)
is split. m
Now consider the case k—»A—>B when g is surjective; set
Kerg=m, so B= A/m. Then in (1) of the previous theorem we of course
have Qg , =0, and we want to determine Kera.

Theorem 25.2 (Second fundamental exact sequence). In the above
notation, we have an exact sequence

4 x

@ m/m? — Q4 ®yB—>Qpy -0
where 6, is the B-linear map defined by é(xmod m?)=d,,x® 1. If B is
0-smooth over k then

5) 0—-m/m? — Q4 ®B—Qp,—0
is a split exact sequence.
Proof. We once more take an arbitrary B-module T and consider

(6) Homy(m/m?, T}« Der,(4, T)«= — Der,(B, T).

For DeDer,(A4, T), to say that 6*(D)=0 is just to say that D(m) =0, so
that D can be considered as a derivation from B = A/m; hence (6) is exact.
If B is 0-smooth over k then the extension

0—m/m?* — A/m>— B0

of the k-algebra B by m/m? splits, that is there exists a homomorphism
of k-algebras s: B —>» A/m? such that gs = 15. Now sg:A/m? — A/m?isa
homomorphism vanishing on m/m?, and g(1 —sg) =0, so that if we set
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. p=1—sg then D:A/m*> — m/m? is a derivation. If y eHomy(m/m?,T)
" then the composite D of

A — A/m? i»m/m2 2T

is an element of Der, (4, T) satisfying §*(D’) = . Indeed, for xem, if we
. et Xx=xmodm? then

D'(x) = Y(D(X)) = Y (X — sg(x)) = Y(X).
.- Therefore 6* is surjective. If we set T =m/m? then we see that (5) is a
¢ split exact sequence. m

Example. Suppose that B=k[X,.... X, ]/ (f1.,.... [} =k[xy,..., %]
then setting A = k[X,,..., X,] and using the above theorem, we have
' QB/k = (QA/k ® B)/Z Bdf;=F/R,
where F is the free B-module with basis dX,...,dX,, and R is the
submodule of F generated by df, =Y ;(0f,/0X;)dX; for 1 <i<m. For
example, if k is a field of characteristic # 2 and

B=k[X, Y]/(X?+ Y?)=k[x,y],
then Qg, = Bdx + Bdy, where the only relation between dx and dy is
xdx + ydy = 0. If k has characteristic 2 then Qg is the free B-module of
rank 2 with basis dx, dy.

- Theorem 25.3. Suppose that a field L is a separable algebraic extension
of a subfield K; then L is 0-etale over K. Moreover, for any subfield k ¢ K
we have Q; , = Qg ®k L.

Proof. Suppose that 0—»N —C — C/N -0 is an extension of K-
algebras with N2 =0, and that u:L— C/N is a given K-algebra homo-
morphism. If I is an intermediate field K = L = L with L finite over K,
P then, as is well-known in field theory, we can write L = K(a); let f{X) be
;5’ the minimal polynomial of « over K so that L ~ K[X]/f), and f"(x) # 0.
i Thus to lift uy: L — C/N to C, we need only find an element yeC
g satisfying f(y) =0 and ymod N = u(x). Now choose some inverse image
yeC of u(w); then f(y)mod N =u(f(x))=0, so that f(y)eN. Moreover,
N2 =, so that for neN we get

; fo+m=10+ f )

but f'(«) is a unit of L, so that u(f'(«)) = f'(y)mod N is a unit of C/N,
& and hence f'(y) is a unit of C by Ex. 1.1. Thus if we set n = — f(3)/f'()
we have neN and f(y + n) = 0. The K-algebra homomorphism v: L' — C
3 obtained by taking o to v(x) = y + # is a lifting of u,,, and one can see by the
construction that v is unique. Thus for every aeL there is a uniquely
'1’, determined lifting v,:K(«) — C of Uy and we can define v:L —C
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by v(e) = v (o). In fact, for o, feL there exists yeL such that K(y) containg
both o and f, and then by uniqueness we have

Uy = Vs ADd 0, 5 = Vp.
The second half comes from Q; x =0 and Theorem 1. =&

We turn now to derivations. As we have seen, if 4 is a ring of
characteristic p then for DeDer (A) we have DPeDer (4). What can we say if
i<p?

Theorem 25.4. Let K be a field of characteristic p, and let 0 # DeDer(K).

(i) 1,D,D?,..., D" ! are linearly independent over K;

(ii) the only way in which ¢+ ¢, D+ - +¢,_, D" ! with ¢;eK can be
a derivationisif co=c,=---=¢,_, =0.

Proof. For acK, write a, for the operation of multiplying by a; then
the property D(ax)=D(a)x +a-Dx of a derivation means that D.q, =
D(a), + aD. We can write the Leibnitz formula as

1

Dica, =aD'+i-D(@D"~ ' + <2

)DZ(a)D"‘2 ++ Da)y;

our proof exploits this formula.

(i) For some i < p suppose that 1,D,...,D'"! are linearly independent
over K, but that 1,D,..., D" are not. Then we can write D'=c¢;_, D' ' +
4 ¢, with ¢,eK. If we choose some aeK such that D(a) # 0, then in
view of Diea, = ¢, D' "toa, + -+, we get

aD'+i-D(@)D'" '+ =c¢;_jaD' "t 4,
where ... indicates a linear combination of 1,D,..., D' 2. Subtracting 4
times our original relation from this gives a relation of the form
i-D(@Di =" =
and this contradicts the assumption that 1,D,...,D""
independent.

(ii) Suppose that E = ¢;D' + - 4+ ¢; D + ¢, is a derivation of K, with i <p
and ¢;#0. Then E(1)=c,, so that ¢,=0. Now if i > 1 then take aeK
such that D(a) # 0, and substitute both sides of Eca, = ¢;D'<a, + - in the
Leibnitz formula: we get

aE + E(a), = ac;D' + [i-c; Dla) + ac; 1D + -+,
but then in view of the linear independence of 1, D, ..., D? !, the coefficients
of D'~! on both sides must be equal; therefore i-c;-D(a) =0, which is @
contradiction. m

3

L are linearly

Remarks. (i) The theorem also holds if char K = 0.
(i1) If K is not a field, this result does not necessarily hold. For example,
let k be a field of characteristic p, and set A = k[X]/(X?) = k[x], with
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x? =0; then every derivation of k[ X] will take the ideal (X?) into itself,
. and therefore induces a derivation of A. In particular, the derivation
- x?71-0/0X of k[X] induces DeDer,(4) such that D(x)=x?P"! but
D(x)=1i'x""'xP"1=01if i > 1, and therefore for p>2 we have D?>=0.

¢ Theorem 25.5 (the Hochschild formula). Let A be a ring of characteristic
_p; then for aeA and DeDer(A) we have

(aD)? = a?D? + (aD)’ '(a)'D.

" Proof. Set E=aD. Then E>=E-a, oD =(aE + E(a))D = a?D? + E(a)D,
- and proceeding by induction, we get a relation of the form

>

k—1
E*=d'D*+ ) b, ;D'+E*"'(a)D
i=2

" where b, ; are elements of A given by a purely formal computation, so

“that

b= fiila, Dia), D¥a),..., D*"H(a)),

- where the f, ; are polynomials with coefficients in Z/(p) not depending on
A,onaoronD. Now to prove our theorem we need only show that f, ; =0
for 1 <i<p. Let k be a field of characteristic p, and let x, x,,... be a
countable number of indeterminates over k; set K = k(x,, x,,...). Define
a k-derivation D of K by Dx; = x;, ;. (Since Q4 is the free K-module with

- basis dx;, dx,,..., given any f,eK there exists a unique DeDer,(K)
such that Dx; = f,.) For this D, we set E = x,D; then since E? — x{D? =

by, DP"' 4+ b, , D2+ E?"Ya)'D is a derivation, by the previous

theorem we must have b,, =0 for 1 <i < p. Therefore
bp,i:fp,i(xl’x27""xpfi+1):03

and this proves that f,;=0. =

This formula is known as the Hochschild formula, although it is also
reported to have been first proved by Serre. Be that as it may, it is an

important fact that (aD)” is a linear combination of D” and D.

Exercises to §25. Prove the following propositions.

25.1. Let A be a ring, a, be 4 and D, D'eDer (A); then
[aD,bD"] = ab[D,D'] + aD(b)D’ — bD'(a)D.
Hence in order for an A-submodule g< Der(A4) to be closed under
[, 1. itis enough to have g =) ,.; AD, with [D;, D Jeg for all i,jel.

252. Let A be a ring containing the rational field Q. Suppose that xeA4 and
DeDer (A4) are such that Dx =1 and ();2,x"4 =(0); then x is a non-
zero-divisor of A.

253. Let A be aring, and I an ideal of 4; set 4 for the I-adic completion of A.
Then for DeDer(A4) we have D(I")c 1"~ for all n> 0, so that D is I-
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adically continuous, and hence induces a derivation of 4. Also for
multiplicative set § < A4, a derivation D induces a derivation of Ag by
means of D(a/s) = (D(a)-s — a- D(s))/s.

254. Let k be a ring, k' and A4 two k-algebras, and set A" =k’ ®, 4; let
S < A be amultiplicative set. Then Q.. = Q, , k' =Q,, ®, 4",
and Q5 =Q; ® 4 4s.

25.5. Let A be a ring of characteristic p, and xe A, DeDer (4) elements such that
D? =0and Dx = 1;set Ay = {acA|Da = 0}. Then A, is a subring of 4, and
A=Ao[x]=Ag+ Agx+ -+ Agx?~ !, with 1, x,...,x* ! linearly inde-
pendent over A,

26 Separability

Let k be a field and A a k-aigebra. We say that A is separable
over k if for every extension field k' of k, the ring A’ = 4 ®,k’ is reduced,
that is does not contain nilpotents. From the definition, one sees at once
the following:

(1) a subalgebra of a separable k-algebra is separable;

(2) A is separable over k if and only if every finitely generated k-
subalgebra of A4 is separable over k;

(3) for A to be separable over k it is sufficient that 4 ® k' is reduced
for every finitely generated extension field k' of k;

(4) if A 1s separable over k and k' is an extension field of k then A® k'
is separable over k'.

Remark. When A is a finite k-algebra, the separability condition can be
checked using the discriminant. The trace of an element o of 4, denoted
by tr 4, (), is defined to be the trace of the k-linear mapping A — A induced
by multiplication by «. Let wy,...,w, be a linear basis of A over k. Then d
= det(tr 4, (w;w;)) is called a discriminant of 4 over k. If we use another
basis w},...,w;,, and if w; =) ¢;w;, then the discriminant with respect to
this basis is det(c;;)?-d. Thusd = 0 or d # 0is a property of A independent of
the choice of basis. Now we claim that 4 is separable if and only if d #0.
Proof. 1f k' is an extension field of k and A’ = A®, K, then w,,...,®, 18
also a linear basis of 4’ over k', and so d is also a discriminant of A’ over
k. If A’ is not reduced, let N =nil(4’). Take a basis w),...,w, of A’
such that o},...,, span N. Then w;w)j is nilpotent for i <r, hence its
trace is zero. It follows that det (tr(w;w})) =0, and so d =0. Conversely,
if A is separable over k, take an algebraic closure K of k. Then 4 ®,K is
reduced. Therefore we need only prove that if k is algebraically closed
and A is reduced then d # 0. Now A is an Artinian reduced ring, hence is
a finite product of fields, cach of which (as a finite extension of k) is
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; isomorphic to k. Thus 4 = ke, + -~ + ke, with e;e; =0 for i #j and e} = e;.
- Hence tr(e)=1and d #0. m

: In what follows we consider mainly the case when A is a field. If K is
. an algebraic extension field of k, and is separable in the usual sense (that
. is every element of K is a root of a polynomial with coefficients in k having
: no multiple roots), then K is separable over k in our sense. To see this,
by (2) above we can assume that K is finitely generated over k, and then
> according to the well-known primitive element theorem of field theory,
" K ~k[X]/(f(X)), where fek[X] is irreducible and with no multiple
- roots. Then if k' is an extension field of k we have

K@ k'~ K'[x]/(f (X)),

nd when we factorise f into primes in K'[X] we get f = f,... f, with
f»fj)=1fori+#j, so that by Theorem 1.4,
KIXY/() = KIXT/(f 1) x - x KIXT/(Sf )
ince this is a direct product of fields, it is reduced. m

We say that an extension field K of k is separably generated over k if
K has a separating transcendence basis over k, that is a transcendence
jasis I' such that K is a separable algebraic extension of k(I').

Theorem 26.1. A separably generated extension field is separable.

roof. Let k be a field and K a separably generated extension of k, with T’
separating transcendence basis of K. If k' is any extension field of k then
(IN®,k is a ring of fractions of k[T]® k' =Kk'[T'], so that it is an
integral domain with field of fractions k'(I'). Thus K®k'=K®q
k(I ® k') is a subring of K® ,,k'(I'). Now K is a separable algebraic
xtension of k(I), so that as we have secen above K® k() is
b reduced. m

Theorem 26.2. Let k be a field of characteristic p, and K a finitely generated
xtension field of k; then the following conditions are equivalent:

(1) K 1s separable over k;

(2) K®, k' is reduced,;
 (3) K is separably generated over k.
Proof. (1)=(2) is trivial and (3)=(1) has just been proved.
- (9=(3) Let K=kx,,...,x,); we can assume that x,,...,X, is a
" transcendence basis for K over k. Assume furthermore that x, , 15--0y X, ATE
. separable algebraic over k(x,,...,x,), and that x ., is not; set y=x,,,
¥ and let f(Y”) be the minimal polynomial of y over k(xi,...,x,). The
coefficients of f(Y?) are rational functions of x,,...,Xx,, so that clearing
- denominators we get an irreducible polynomial F(X,,...X,, Y?)e
k[X,,....X, Y], with F(x,y?)=0. Now if dF/0X,=0 for 1<i<r then
F(X, Y?) is the pth power of a polynomial G(X, Y) with coefficients in k'/?,
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but then we would have
klxp,.o %, 1@ kP = (k[X, YIAF(X, Y))® (k'
=k'P[X, YING(X, YY),
this is a subring of K ®,k'? containing nilpotent elements, and thjg
contradicts (2). Hence we can assume that 0F/0X | # 0. Then x, is separable
algebraic over k(x,,...,x,,y), and hence so are x,,,,...,x, Therefore

exchanging x, and y=1x,,,, we find that x,,,,...,x,,, are separably
algebraic over k(xy,...,x,), so that by induction on g, we have (3.

Remark. As we have seen in the proof, if K = k(x,,...,x,) is separable
over k then we can choose a separating transcendence basis from among
Xiyeres Xy

Theorem 26.3. If k is a perfect field then every extension field K of k is
separable over k, and a k-algebra A is separable if and only if it is reduced.
Proof. Recall that a field k is perfect if every algebraic extension of k is
separable. If k has characteristic 0 then every extension field K is separably
generated, and therefore separable. In characteristic p, perfect implies
k=k'7, so that by the previous theorem, all subfields of K finitely
generated over k are separable, so that K itself is separable over k. (Caution:
K may fail to be separably generated over k; for a counter-example, let x
be an indeterminate over k, and K =k(x,x* ,x? ,...).) Now we show
that if A is a reduced k-algebra then A is separable. We can assume that
A is finitely generated over k. Then A4 is a Noetherian ring, and the total
ring of fractions K of A4 is of the form K=K, x - x K, by Ex. 6.5. Each
K; is separable over k, so that K is also separable, and hence so is its
subring A. =

In general two subfields K, K’ of a given field L are said to be linearly
disjoint over a common subfield k if the following three equivalent
conditions are satisfied:

(@)if ay,...,a,€K are linearly independent over k they are also linearly
independent over K’

(b) the same with K and K’ interchanged;

(c) if we write K[K'] for the subring of L generated by K and K, the
natural map K®, K’ — K[K’] is an isomorphism.
Proof of equivalence. (a)=(c) Let & = Y 7x;® y; be an element of the kernel
of K®,K' — K[K']. Suppose that x,,...,x, are linearly independent
overk, and that the remainder x, , ,...., X,, are linear combinations of Fh?m’
and rewrite ¢ =) [ x,® y;. The image in K[K"] of £ is Y x;y;, but if this is 0
then by (a) we have y; =0 for all i, so that ¢ = 0. This proves (c).

(¢)=>(a) is also easy; finally, since (c) is symmetric in K and K’
course also get (a)<(b).

we of
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- Let k be a field of characteristic p, and K an extension field of k. Insiqe
n algggraic closurgnﬁ of K, consider the subfields k¥ "= {eeKjourek
d k' ={Jns0k” . These are purely inseparable extension fields of k,
ind k* is the smallest perfect field containing .

rheorem 26.4 (S. MacLane). Let k and K be as above. We have

(i) if K is separable over k then K and k” " are linearly disjoint over k;
(ii) if K and k* " are linearly disjoint over k for some n >0 then K is
separable over k.

Proof. (i) Suppose that a,...,a,eK are linearly independent over k. If
kautfi:O with & ek’ ", we set k, =k(£,,...,&,), so that k, is a finite
xtension of k; for some sufficiently large n we have k§" <k, and if we set
= K ®.k,, then 4 is a reduced ring. However, A4 is finite as a K-module,
so is a zero-dimensional ring, but the p"th power of any clement of A isin K,
that we see that A has only one prime ideal. Hence 4 is a field, and
~ K[k,]. From this we get Y «;® & =0, that is & =0 for all i,

(i) If K and k* " are linearly disjoint, then k" " < k* ", and hence K and k*"
are also linearly disjoint over k, so that K®,k” " is a field. If K" is a subfield
. of K which is finitely generated over k then by Theorem 2, K’ is separable
“ gver k. Hence K is also separable over k. ®

1

 Differential bases

Let K be an extension field of a field k; then Qy, is a vector space over

K, and is generated by {dx|xeK}, so that there exists a subset Bc K
such that {dx|xeB} forms a basis of the vector space Qg,. A subset
B < K with this property is called a differential basis of K over k. The
following condition (*) is necessary and sufficient for a subset {x,},.a © K
to form a differential basis for K over k.

(*)if y,eK are specified for every AcA in an arbitrary way, then there
exists a unique DeDer,(K) such that D(x;) =y, for all A.

For x,,...,x,eK, let us study the condition for dx,,...,dx,eQy, to be
linearly independent over k. If k has characteristic O then this is equivalent
to x,,..., x, being algebraically independent over k. Indeed, if there exists
0# f(X)ek[X,,...,X,] such that f(x,,...,x,) =0, then choose such a
relation of smallest degree; suppose for instance that X | actually appears in
f,sothat f, = 0f/0 X, is non-zero, but of smaller degree than f, and hence
f1(x)#0. Then f(x)=0 gives

0=df =Y fixdx,
so that dx,,...,dx, are linearly dependent. Conversely, if x,...,X, are
algebraically independent over k then there exists a transcendence basis
B of K /k containing these, so that there exists k-derivations D, of the purely
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transcendental extension k(B) satisfying

Dix;)=1 and Di(y)=0 for x,# yeB,
(namely, d/0x;). Moreover, K is a separable algebraic extension of k(B),
and so by Theorem 25.3 is O-etale, so that the derivations D; extend to
derivations from K to K. Then since Dx;)=4;; the differentiais
dx,,...,dx,eQy, are clearly linearly independent. Thus in this case a
differential basis is the same thing as a transcendence basis.

Now consider a field k of characteristic p. We say that elements
Xy,...,x,6K of an extension field K are p-independent over k if
[K?(k, xy,...,x,):KP(k)] = p", and a subset B = K is p-independent if any
finite subset of B is p~-independent. This condition means precisely that the

set o
Xy,...,X, are distinct }

elements of Band 0 <a; <p

FB: {XO{I ...Xﬁ"

is linearly independent over K*(k); the elements of I'y are called the
p-monomials of B. If B is not p-independent, we say it is p-dependent.
The condition of p-independence is not just a property of B and k, but
also depends on K. If B< K is p-independent over k and K = K¥(k, B),
we say that B is a p-basis of K/k. f C = K 1s p-independent over k then
one can easily show by Zorn’s lemma that there exists a p-basis of K/k
containing C.

One sees easily that B is a p-basis of K/k is equivalent to I'; being a
basis of K over K”(k) in the sense of linear algebra. If this holds then any
map D: B— K has a unique extension to an element DeDer,(K). Indeed,
for a p-monomial of B we set

Dx3...x2y= Y1 ax®. . xBT X2 D(x;),

and extend D to K as a K?(k)-linear map; then D is a k-derivation. Thus
a p-basis B is a differential basis of K/k. Conversely, if B’ is a differential
basis of K/k then B’ is p-independent over k; for if x,,...,x,eB" are
p-dependent, we can assume that x,eK”(k, x,,...,x,), so that we can
write x, = f(x,,...,x,), where f is a polynomial with coefficients in K?(k).
Then in Qg we get dx; = 3(0f/0x,)dx;, which contradicts the linear
independence of dx,...,dx,. Now if we take a p-basis B of K/k containing
B, then since both B and B’ are differential bases, we have B=B. We
summarise the above as follows: '

Theorem 26.5. The notion of differential basis coincides with transcendence
basis in characteristic 0, and with p-basis in characteristic p.

Now we look at the relation between separability and differential bases.
Letting IT < k denote the prime subfield of k, we write & for Q, ;.

Theorem 26.6. For a field extension K/k, the following conditions ar¢

D DS
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(1) K/k is separable;

(2) for any subfield k' <k the standard map Q) ®, K —> Qg is
jective;

(2')for any subfield k' c k and any differential basis B of k/k', there exists a
ifferential basis of K/k’ containing B;

(3) Q. ® K —Qy is injective;

(4) any derivation of k to an arbitrary K-module M extends to a
erivation from K to M.
roof. (2) and (2') are clearly equivalent, and (2)=>(3)<>(4) are trivial. In
haracteristic 0, both (1) and (2') hold, so that we need only consider the case
f characteristic p.

(1)=(2') Since K and k'/? are linearly disjoint over k, we can apply the
omorphism xi—x? to all three of these to get K? and k linearly disjoint
| ver k?. Hence KP(k?,k’)= K?(k'} and k are linearly disjoint over kP(k’)
hisee Ex. 26.1 below). If we choose a p-basis B of k over k' then the set I’
f p-monomials of B is linearly independent over kP(k’), hence also linearly
dependent over KP(k), and B as a subset of K is also p-independent
wver k'. Therefore B can be extended to a p-basis of K/k'.

(3)=(1) If we take a p-basis B of k over I1 then the set I' of p-monomials

B is a basis of k over k. {dx|xeB} is a basis of Q, over k, and by
ssumption is linearly independent in Qy over K, so that I'g is also linearly
ndependent over K¥. Therefore

k® ., KP ~k(K?),

nd k and K7” are linearly disjoint over k?, so that by Theorem 4, K/k is
eparable. m

Let k be a field of characteristic p, and IT < k the prime subfield; a p-basis
Eof k/T1 is called an absolute p-basis of k. If ko <k is any perfect field
*ntalned in k then kP(k,) = k? = k*(I1), so that an absolute p-basis of k is
0 a p-basis of k/k,.

B¥heorem 26.7. Let k be a field of characteristic p, and K an extension field of
3 t. If an absolute p-basis of k is also an absolute p-basis of K, then K is 0-etale
fOver k, and conversely.

.,00f. Consider a commutative diagram of ring homomorphisms

K—",C

L

. here C = C/N, w1th N an ideal of C satisfying N> =0, and g the natural
7 ap For aeK, if we choose aeC such that u(x)=g(a), then a” is
ependent of the choice of a. For if g(a)=g(a’) then we can write

- T AT an ]l e Ve N I . M 7 - AU Al
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characteristic p, so that
a?=a? 4+ x"=af.

Now we define a map v,:K” — C by vo(a?) = a? for aeK, where geC
is such that u(a) = g(a); one checks easily that v, is a homomorphism, apq
coincides with j on k”. So far we have not used the assumption on K/,
Now since by assumption K is separable over k, and K = K?[k], we cap
think of K as

K =K"®,k,
and thus we can define v: K — C by letting v be equal to vy, on K”, and
equal to j on k; this is a hifting of # to C. Uniqueness of the lifting is clear
from the fact that K?(k) = K, so that Qg =0.

Conversely, if we assume that K/k is O-etale, then first of all, from
0-unramified we have Qg = 0, so that by 0-smoothness and Theorem 251
we have Qp = Q, ®, K. Thus an absolute p-basis of k is also an absolute
p-basisof K. =

Theorem 26.8. Let K /k be a separable extension of fields of characteristic
p, and let B be a p-basis of K/k. Then B is algebraically independent over
k, and K is O-etale over k(B).

Proof. Suppose by contradiction that b,,...,b,eB are algebraically
dependent over k. Suppose that 0 # fek[X,,..., X,] is a polynomial of
minimal degree among all those with f(b) =0, and set deg f = d. Then write

f(Xl,...,X")=0 Y Gipn (X0 XDX X
<

Kiypnin <P
Then since b,,...,b, are p-independent over k and f(b)=0, we have
gi,...(b") =0 for all values of i,,...,i,. However, since

d>degg;, ;. (XP)+ i+ +i,
by choice of f we must have f(X) =g, o(X?). Hence we can write f in
the form f(X)=h(X)?, with hek!’?[X,,..., X,]. However, since K and
k!/? are linearly disjoint over k, the monomials of degree <din by,...,bn
being linearly independent over k, must also be linearly independent over
k' Thus h(b) #0, but this contradicts h(b)” = f(b)=0. For the second
half, see the proof of the following theorem. m

Remark. Although k(B) is purely transcendental over k, it does not
follow that K is algebraic over k(B); for a counter-example, let K=
k(x,x?"',x?"",...), with x an indeterminate over k. In this case B= .

Theorem 26.9. 1f K is a separable field extension of a field k, then K1
0-smooth, and conversely.

Proof. Let B be a differential basis of K/k. If K/k is separable then by
Theorem 5 and Theorem 8, k(B) is purely transcendental over k. Thefs

... . er.
as one sees at once from the definition, k(B) is O-smooth over k. Moreove™
T ILAD e 1 ateala T ~alharactarctic O thic fallawe fram Theorem 253’ in
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characteristic p, by Theorem 6 we have an exact sequence 0-Q, ® K
— Qx — Qg —0, so that putting together an absolute p-basis of k
with B we have an absolute p-basis of K, and this is clearly also an absolute
- p-basis of k(B). Hence K/k(B) is O-etale by Theorem 7. Therefore K/k is
© 0-smooth.

Conversely, if K/k is 0-smooth then by Theorem 25.1, Q, ® K — Qy
is injective, so that by Theorem 6, K/k is separable. =

Imperfection modules and the Cartier equality

Quite generally, if k — 4 — B are ring homomorphisms, we write ['g
- for the kernel of Q,, ®,B—>Qg,, and call it the imperfection module
. of the A-algebra B over k. If k=7 or k=2Z/p (the prime field of
. characteristic p) we omit k, and write I'p,.

- Lemma 1. Let k — K — L — L be field homomorphisms. Then there
- exists a natural exact sequence

0- rL/K/k &L — rL’/K/k I rL’/L/k

———’QL/K®LE _"QL’/K —’QL'/L_’O'

Proof. We have a commutative diagram with exact rows.
00— rL/K/k &L —*Qk/k ®xL _"QL/k ®.L —‘)QL/K ®.L -0

i l I 2 l 3 l
0->  Tpxp —u®L — Qpy  — Qx —0.
We abbreviate this as
0X—»A—>B—»P->0

Lol

: 0-Y—>A4A—C—Q-0.
a; and from it construct
' 0-»>A4/X —B-—P-0

RN
0-54/)Y —C—Q-0;
applying the snake lemma gives the exact sequence
, 0-Y/X —Ker f, —Ker f; 0,
. from which we easily get

0-X—Y—Kerf, —P—Q—Coker f;-0.

- This is just what we wanted to prove. m

. Theorem 26.10 (the Cartier equality). Let k be a perfect field, K an
~ extension of k and L a finitely generated extension field of K; then
(*) I‘kLQL/K = tr.degKL + I‘kLrL/K/k’

¥ (Wher rk.  notes th dimencion of 4 ector epace aver )
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Proof. Suppose that k < K < L < L, with L finitely generated over K and
L finitely generated over L. If the theorem holds for k= L = L and for
k < K = L then both I';;; , and ' 4, ® L are finite-dimensional over [/,
so that by the lemma, I';. g, is also finite-dimensional, and
rhy Qp g — rtkpoku
=(rk Q. — 1k Tpgpp) + 0k Qp g — 1k Ty i)
= tr.deg, L' + tr.deg, L= tr.degy L;

thus the theorem also holds for k « K < L. Now every finitely generated
field extension can be obtained by a succession of the following three
kinds of simple extensions:

(1) L = K(a) where « is transcendental over K;

(2) L = K(a) where o is separable algebraic over K;

(3) L. = K(a) where char K = p, and of = aeK, but a¢K.
Hence we need only prove (*) in each of these special cases. (1) and (2)
are easy. For (3), if we write L = K{X]/(X? — a) we see that

Q= Qgx ® L)/Lda
= (Qgp/Kda)® L@ Ldo,

and da # 0. Furthermore, since k is a perfect field, we have a¢ K? = kK?,
so that in Qg (= Q) we have da #0, rk Q= Land rk T = 1, so that
(*) also holds in this case. =

Remark (Harper’s theorem). An ideal I of a ring R is called a differential
ideal if it maps into itself under every derivation of R to R. A ring Ris said to
be differentiably simple if it has no non-trivial differential ideals. The
following beautifui theorem is due to L. Harper, Jr.:

Theorem. A Noetherian ring R of characteristic p is differentiably simple if
and only if it has the form R=k[T,,...,TAT%,...,TE), where k is a
field of characteristic p.

The “if’ part is easy. The proof of the ‘only if’ part is not so easy and we refer
the reader to Harper [1] and Yuan [1]. Recently this theorem was used by
Kimura—Niitsuma [1] to prove the following theorem which had been
known as Kunz’ Conjecture:

Theorem. Let R be a regular local ring of characteristic p, and let S be @

local subring of R containing R. Assume that R is a finite S-module. Then
R has a p-basis over S if and only if S is regular.

Exercises to §26. Prove the following propositions.

26.1. Let L be a field and k, k', K, K’ subfields of L; assume that & ckckK
and k< K, and that K and K’ are linearly disjoint over k. Then weé
have (i) KK’ =k, and (if) K and k'(K’) are linearly disjoint over k.
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26.2. Let Lbe a separable extension of a field K; then L((T},..., T,)) is separable
over K((Ty,...,T,)). Here L((T,,..., T,)) denotes the field of fractions of

L[T,,....T.].

27 Higher derivations

Let k->A4-25B be ring homomorphisms. Let t be an
lindeterminate over B, and set B,, = B[t]/(t"" ") form=0, 1,...,and B, =
[t]. We can view B,, as a k-algebra in a natural way (for m < ).

§ For m< oo we define a higher derivation (over k) of length m from A
o B to bc a sequence D=(Dg,Dy,...,D,) of klinear maps D;
— B, satisfying the conditions

(*) Do=g and Di(xy)= 3} D,(x)D,y)

r+s=i
for 1 <i<mand x, ye A. These conditions are equivalent to saying that the
ap E;:A — B,, defined by

E()= ) Dy
a k-algebra homomorphism with E,(x) = g(x)mod 1.

‘When A=B and g =1 (the identity map of A) then we speak simply
f a higher k-derivation of A. In what follows we consider mainly this

If D=(Dy,D,,D,,...) is a higher derivation then D,eDer,(4, B).
EFurthermore, D, is 0 on f(k) for i > 0. In general we say that D is trivial
ion acA if D;(a)=0 for i>0; this means precisely that a goes over
Hinto a constant under the homomorphism E, corresponding to D.
.. The theory of higher derivations was initiated by Hasse and F. K.
hmidt [1]. In view of this, in this book we write HS, (4, m) for the set
f all higher k-derivations of length m of 4, and we also write HS,(A4) for
1815, (4, 00). When we are not concerned with k, we simplify this to HS(4, m)
nd HS(A). These sets do not have a module structure like that of Der,(4),
t they do have a group structure (generally non-Abelian), which we
OW explain. The homomorphism E;:A-— A4, corresponding to
€HS,(4,m) can be extended to an endomorphism of A4,, by setting

E,(Z avt”) =Y E/(a,)r"

OW E, is injective, since if £ =a,t" +a,, "' + €4, with a, #0 then
&) = a,t'mod "1 also, by setting

C-Et(artr)zbr+ltr+1 + oy
C—E (@t +b " )=yt 4
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and proceeding in the same way, we see easily that E, is surjective. Ip
other words, E, is an automorphism of 4,,. Conversely, an automorphism
E of the k-algebra A,, satisfying E(a) = amod¢ corresponds to a higher
derivation. Thus if we identify HS,(4,m) with a subgroup of the auto-
morphism group Aut,(4,) of A,, it acquires the group structures
which we are looking for. Let us start computing this structure. For
D =(D,,Dy,...), D'=(Dg, Dj,.. ), set
D-D’'=(Dj, Df,..), and D~'=(D§ D1,

then
E(E{(a)) = E,(a + D) (a)t + Dj(a)t* + )
=(a + D, (ajt + D,(ajt* + )
+(Di(a) + Dy (D (a))t + D,(Dy(@)* + )t
+(D4(a) + Dy (Dy(a) + )2 + -
=a+(D; +D})(a)t+ (D, + D, D} + D)) (a)® +--,
so that

D/= ) D,D, forall j
ptq=i
and the D} are obtained by solving ) ,,,-;D,D¥ =0 for i >0, that is
D¥¢=Dy=1, Df=—-D,, D¥=D?-D,,
D}{=-D7{+D,D,+D,D, - D;,....

If Sc A and T < B are multiplicative sets such that g(S) = T, then the
given homomorphism g:4 — B induces a homomorphism Ay —— By.
Now we show that in a similar way, a higher derivation has a unique
extension to the localisations. To see this, let D =(D,,D,,...,D,,) be a
higher derivation of length m from A to B; if we compose the homo-
morphism E;:4 — B,, corresponding to D with the localisation
B,,—(B;),, then an element xeS maps to g(x); + D,(x);f + ---, and
this is a unit of (By),, since the constant term g(x); is a unit of By. This
E, induces a homomorphism A —(By),, which provides a higher
derivation Ag — By.

Let D=(D,,D,,...,D,) be a higher k-derivation of length m < co from
A to B. Consider the problem of extending this to a higher derivation of
length m + 1. If E, ,,: A— B, is the homomorphism corresponding to D.
the problem of extending D is equivalent to that lifting E,, to 2
homomorphism A — B, , ;. The following theorem is then clear from this.

m>

Theorem 27.1. 1f the ring A is O-smooth over a ring k, then a higher
derivation of length m < oo over k from A to an A-algebra B can be
extended to a derivation of length o0.

This theorem can be applied for example to the case of a field k and a
separable extension field A of k.
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If A4 is a ring of characteristic p then an ordinary derivation of A4 is
zero on the subring A%, but higher derivations need not vanish on 4?7, If
D =(Do,D;,D,,...) is a higher derivation of length m>p then from
E,(a") = E,(a)’ = a’ + D((a)P-t" + -, we get

D (@")=D,(a)’, and in general D,.(a”)=D,(a)""

For example, it follows from this that if k is a field of characteristic p, and
K =k(x) with oPek but a¢k, then although there exists DeDer,(K)
such that D(a) = 1, this D cannot be extended to a higher k-derivation of
length > p. Since K is separable over the prime subfield, D can be extended
to a higher derivation of length oo (over the prime subfield), but this
extension cannot be trivial on k.

We say that a higher derivation D =(Dy,D,,...)eHS,(A) is iterative if
it satisfies the following conditions:

DD, = (’TJ>D,H forall i),

“This condition is equivalent to asking that the following diagram is
commutative:

A[t] — A[ ]

J I

ALA[[PHA]],

here E,(a)=) t'D,(a) and E,(}.t*a,)=) t'E,(a,), and the right-hand
vertical arrow is the inclusion map. Indeed,

EJE(@) = E(L'D,(@))= ¥.r'Y,w"D,D,(a),

-and

E (@) Z(t+“)AD Zt zuu< > viu(@).

- If A contains the rational field @, then one sees by induction on n that
an iterative higher derivation satisfiess D,=D}/n!, and is hence
~determined by D, only. Conversely, for DeDer,(4), we see that
(1,D,D?/21,D3/31,...) is an iterative higher derivation. If 4 has charac-
teristic p then for an iterative D = (D,,D;,...) we have D;=D//i! for
: i<p, and D7 =0. Thus one cannot hope to extend any derivation to an
: iterative higher derivation, even if A is a field.

- Theorem 27.2. Let k—» A —* B be ring homomorphisms, and suppose
that B is O-etale over 4. Then given D =(Dy,Dy,...)eHS,(A4, B),
:’there exists a unique D' =(Djp,D},...)eHS,(B) such that Di(g(a)) =
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D;(a) for all i. Moreover, if D* =(Dg,D%,...)eHS,(4) is such that
D, =goD¥ for all i, and if D* is iterative, then D’ is also iterative.

Proof. There is no problem about D, = 1. Now assume that (Dy,...,D},)e
HS, (B, m) has been constructed so that D}og = D, for i < m; then if we define

m+1

h:A— B, = B[t]/(t"*?) by h(a)= ZO: "D, (a),

and u:B — B, by u(b) = 3 ¢ 1'D/,(b), we obtain the left-hand commutative
diagram.

B—-B, B B,
I AN

h h
A_'_')Bm+1 A—’Bm+1

Hence by the O-etale assumption, there exists a unique v:B — B,,, ; which
makes the right-hand diagram commutative. Repeating this we see that
D' exists and is unique. If D* is iterative, and we consider the homo-
morphisms E,:A — A[t] and E;:B— B[t] corresponding respectively
to D* and D, then we know E,°E, = E,.,, and we need only prove that
E,°E,=E,,,. By induction on m, assume that

E.(E\(b)) = E,, (b)ymod (t,u)"*! for all beB,;
then from the commutativity of

B —E o B[nul/t,uy!

| ]

A AT u] —— B[ u] w2,

fromE,,, = E,~E, and from the assumption that B is O-etale over A, we get
E(E,(b))=E,,,(b) mod(t,uy"** forall beB.
This proves that E,cE;=E,,,. B

Remark. The above D' will be called an extension of D (or of D*) to B,
(even if A is not a subring of B).

Theorem 27.3. (i) Let A be a ring of characteristic p, and suppos¢
that xecd, DeDer(A) satisfy Dx=1 and D?=0; set A,={acAl
Da=0}. Then A is a free module over 4, with basis 1.x,...,x"" L

(ii) Let k be a field of characteristic p, and K a separable extension of k;
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let DeDer, (K} be such that D+#0, D?=0. Set K,={aeK|Da=0}.
Then there exists an xeK such that Dx=1, and a subset B, < K, such
that B={x} UB, is a p-basis for K over k.
Proof . (i) Suppose that oy + 2,x + -+ + 2,x' = 0 for some i < p and a;€4,,.
Then applying D' we get ila; =0, hence x,=0. Hence by downward
induction on i we see that 1,x,...,x” ! are linearly independent over A,.
Now in view of D”=0, for every acA we have D'*'a=0 for some
0<i<p Ifi=0wehaveaeA,. Ifi > 0then D'(a — x'D'a/i!) = 0, so that we
see by induction that

Di*la=0=acAy+ Aox + -+ Ax}
- Setting i =p — 1 in this gives A= Ay + Agx + -+ Agx"" 1,
' (ii) Since D #0 we can find zeK such that Dz #0. Now in view of
. Dz =0, there is an i such that D'z #0 but D'*!1z=0. If we set y=D'z
and x =(D'"'z)/y then Dx =1, so that by (i) we have K = K(x) and
[K:K,]=p. Now if we had x?eKZk, then xeKy k', and we could
~write x =) w,; with w,,...,0,eK linearly independent over k, and
ack!’?. Now k<K, and x¢K, so that x,w,,...,w, are linearly
~ independent over k, and hence by the assumption that K is separable over
* k, they are also linearly independent over k'/7, which contradicts x = Y w;o;.
- Thus xP¢ K%k. Hence we can choose a p-basis C of K, over k such that
 xPeC; set By =C — {x?}. Then if y,,...,y, are distinct elements of B,,
- we have [K5k(xP,y ,...,y,): KBk] =p"*', and together with K = Kg(x)
. this gives [K?k(y,,...,y,):K?k]=p" Thus B, as a subset of K is
. p-independent over k. Since also K,= K§k(x?,By), we have K=
. Ko(x) = KPk(x, By), so that setting B=B,u{x} we get a p-basis of K
‘overk. m

Theorem 27.4. Let K be a field of characteristic p, and k < K a subfield
- such that K is separable over k. Then a necessary and sufficient condition
. for DeDer,(K) to extend to an iterative element of HS,(K) is that D" = 0.
- Proof. We have already seen necessity, and we prove sufficiency. We can
- assume that D #0; if D=0 then we can choose K,,x and B, as in
= Theorem 3, (ii). We set K’ = k(B,); then D is a K'-derivation, K is 0-etale
: over K'(x), and K'(x) is a purely transcendental extension of K'. We define
a homomorphism E,:K'(x)— K'(x)[t] by setting E,(«) =« for aeK' and
Ei(x) = x +t; then

E(E () =x+u+1=E,,,(x)

so that E,-E,=E,,, holds over the whole of K'(x). Thus E, defines a
terative higher derivation D of K'(x) over K'. Since K is 0-etale over K'(x),
- by Theorem 2 there is an extension of D to an iterative higher derivation of
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K over K'; the term of degree 1in D is D, so that D is an extension of D (or
more precisely, of (1,D)). ®

27.1.

27.2.

Exercises to §27.

Let k be a ring, 4 a k-algebra and DeDer,(4). Say that D is integrable
over k if there exists an extension DeHS,(4) with D =(D,,Dy,...) and
D =D, (then D is an integral of D), set Ider,(4)={DeDer,(4)|D
is integrable over k}. Then prove that Ider,(4)< Der,(A) is an A-
submodule.

In the notation of this section, consider the construction of E;;:4 —
A[t] corresponding to D; then if f'eA[t] is any power series with
no constant term, we have A[t']  A[t], so that E,:A — A['] can be
composed to a homomorphism E.:A— A[t], to give a different
higher derivation. Thus for D =(D,,D,,...), the homomorphism E,.
corresponds to the higher derivation D’ = (D,,0,D,,0,D,, .. ); taking the
product D-D’ we get an integral of D, different from D. Thus for given
Delder,(A) there will in general exist many integrals of D; verify that if
Df = 0and we impose the condition that the integral should be iterative, it
is still not uniquely determined.
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I-smoothness

;, J-smoothness is a notion which Grothendieck obtained by reformulating
i the theory of simple (non-singular) points in algebraic geometry in terms of
an algebraic ‘infinitesimal analysis’, which makes effective use of nilpotent
- elements. The definition looks complicated at first sight, but it has various
Iternative formulations, and is a natural and useful notion. In §28, along
with the general theory of I-smoothness following [G1] we prove the
! existence of a coefficient field for a complete local ring of equal character-
. istic, relating this to the author’s idea of quasi-coefficient field
| (Theorem 28.3), and discuss Faltings’ very simple proof of the equivalence
' of m-smoothness and geometric regularity for local rings. In §29 we deduce
- the existence of a coefficient ring for a complete local ring of unequal
characteristic from Theorem 28.10, and prove some classical theorems of
- Cohen on complete local rings; these results are of decisive significance for
. the usefulness of taking completions. § 30 is something of a jumble of various
theories, but is for the most part occupied with the so-called Jacobian
' criterion for regularity. On this subject, we treat the simple and powerful
method obtained by the author’s 1972 seminar in the case of a ring containing
field of characteristic 0; in the most difficult case of power series rings in
. characteristic p, the only method currently available is that of Nagata, and
- we explain this as simply as possible.

28 I-smoothness

Let A be a ring, B an A-algebra, and I an ideal of B; we consider
. B with the I-adic topology. We say that B is I-smooth over A if given an
- A-algebra C, an ideal N of C satisfying N>=0, and an A-algebra
~homomorphism u: B — C/N which is continuous for the discrete topo-
logy of C/N (that is, such that u(I*)=0 for some v), then there exists
> a lifting v:B— C of u to C.

B — C/N

RN

A—'C

213
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If I = (0), that is if no continuity condition is imposed on u, then this is the
definition of 0-smooth given in §25. Write f:C — C/N for the natural
map; then from fv(I*) = u(I*) = 0 we have v(I") = N, hence v(I*) e N* =,
so that v: B — C (assuming it exist) is continuous for the discrete topology
of C. From this, one sees that if B is I-smooth over A, and instead of the
condition N2 =0 we assume that C is an N-adically complete ring, then
a continuous homomorphism u: B — C/N has a lifting v:B -~ C, and v
is continuous with respect to the N-adic topology of C; this is because
we can lift u successively to B— C/N'of i=1,2,..., and then v is given
by B— Lx_rg C/N'=C.

We now return to the original assumption N2 =0; we say that B is
I-unramified (or I-neat) over A if given C, N and a continuous homo-
morphism u:B ~—— C/N, there exists at most one lifting of u to C. If B is
both I-smooth and I-unramified over A, we say that B is I-etale. These
conditions become weaker if we replace I by a larger ideal.

Theorem 28.1 (Transitivity). Let A BB be ring homomor-
phisms, and suppose that ¢’ is continuous for the I-adic topology of B
and the I’-adic topology of B'; if B is I-smooth over 4, and B’ is I'-smooth
over B then B’ is I’ smooth over A. The same thing holds with /-unramified
in place of I-smooth.

Proof. Suppose that u is given in the diagram;

B —*C/N
\\ '/‘

q AR

B--2..'C

then since ug':B — C/N is continuous, by the I-smoothness of B, there
exists a lifting w: B — C. Next by the I'-smoothness of B’ over B, we can
lift u to v: B'— C. Also if B is I-unramified over A4, and the map v in the
diagram exists, then w = vg’ is unique, and if in addition B’ is I’-unramified
over B then v is unique. W

Theorem 28.2 (Base-change). Let 4 be a ring, B and 4’ two A-algebras,
and set B =B®, A" If B is I-smooth over A then B’ is IB’-smooth over
A’. The same thing holds for I-unramified.
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Proof. We have the diagram
B—L>PB-“5C/N

L]

A——d4 —C,

where p, g are the natural homomorphisms. Then if u satisfies u(I”B’) =0,
there is a lifting v: B —— C of up. Then if we define v:B'=B®,4’ — C,
by ¥’ =v® 4, this is a lifting of u to C. For unramified, this is clear from
the fact that v’ is uniquely determined by v. ®

Example 1. Let k be a ring, (4,m) a local ring, (4,7) its completion
and k — 4 a homomorphism. Then

(i) A is rir-etale over A;

(i) A is m-smooth (or m-unramified) over k<>A is f-smooth (or
fit-unramified) over k.

We get a proof at once from the fact that A/ift® ~ 4/m” for all v.

>

Example 2. Let A be any ring, and set B=A] X,,...,X,Jand I =)} X,B;
we give B the I-adic topology. Then B is I-smooth over A.

Remark. The gap between I-smoothness and O-smoothness has been
studied by Tanimoto [1], [2]. For instance, if k is a field, then
k[X,,...,X,] is O-smooth over k only when char k = p and [k:k?] < oo.

Let (4,m,K) be a local ring. If A4 is of characteristic p, then also
char K = p; moreover, if char K =0, then char A =0, and A contains the
rational number field Q. In either of these cases A is said to be
equicharacteristic, or a local ring of equal characteristic; this is equivalent
to saying that A contains a field. If 4 is not of equal characteristic, then
either

charA=0 and char K =p,
or
charA=p" forsome n>1 and charK=p.
In this case we say that A is a local ring of unequal characteristic.

Let A be an equicharacteristic local ring and let K’ be a subfield of A.
We say that K’ is a coefficient field of A if K’ maps isomorphically to K
under the natural map 4 — A/m=K, or equivalently, if A=K'+
m. Moreover, we say that K’ is a quasi-coefficient field of A if K is O-etale
over K’ (or rather, over the image of K’ in K).

Theorem 28.3. Let (A, m, K) be an equicharacteristic local ring. Then
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(i) A has a quasi-coefficient field;

(ii) if A is complete, it has a coefficient field,

(iii) if the residue field K of A4 is separable over a subfield k < A4 then
A has a quasi-coefficient field K’ containing k;

(iv) if K" is a quasi-coefficient field of A, then there exists a unique
coefficient field K” of the completion A containing K.
Proof. (i) Suppose that B={¢,,{,,...} is a differential basis of K/k,
and for each ¢;, choose an inverse image x;eA4. Then by Theorem 26.8,
£,,&,,... are algebraically independent over k, so that the subring
k[x;,x,,...] of A meets m in {0}, and hence A contains the field
K' =k(x,,x,,...). We identify K’ with its image k(B) in K, so that K is
clearly O-etale over K, and K' is a quasi-coefficient field, as required.

(i) By assumption A contains a field, so that it contains a perfect field
{for example, the prime subfield). We need only apply (iii) to this.

K = Ajf
1 i
K— 4

(iv) In the diagram above, there exists a unique lifting of the identity
map K — Aji to K —s A, and its image is the required coefficient field.

(ii) follows from (i) and (iv). m

The next lemma will be made more precise in Theorem 28.7.

Lemma 1. Suppose that (4, m, K) is a Noetherian local ring containing a
field k. If 4 is m-smooth over k then A is regular. The converse holds if
the residue field K is separable over k.

Proof. Take a perfect subfield k, = k; then k is 0-smooth over k,, so that
by transitivity, 4 is also m-smooth over kg, so that we can assume that
k is a perfect field. Also, replacing A4 by A, we can assume that A4 is
complete. Then A4 has a coefficient field containing k; for ease of notation
we write K for this, and identify it with the residue field. If {x,,...,x,}
is a minimal basis of m then as K-algebras we have

Am? = K[X,,..., X, J(X1,..., X )%
The composite

A— A/m? KX, .., X,)/(X)? l»K([Xl,...,X,,]]/(X)Z
lifts to A — K[ X4,..., X, ], and by Theorem 8.4, this is surjective. Thus
dimA4>dimK[X,,...,X,]=n, and together with embdimA4 =n this
gives the regularity of A.

Conversely, if 4 is regular and K is separable over k, then A has a
coefficient field K containing k. Let {x,,...,x,} be a regular system
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of parameters of A, and define a homomorphism of K-algebras
¥:K[X,,....X,] — A4 by ¥(X,) = x;; then once more by Theorem 8.4,
y is surjective, and comparing dimensions, we see that
K[X,,.... X, ] > A4.

Therefore A is ti-smooth over K, and since K is 0-smooth over k, we
see that A4 is Wit-smooth over k, and therefore 4 is m-smooth over k. B

Let k — A — B be ring homomorphisms, and let / be an ideal of B;
we consider B in the I-adic topology. We say that B is I-smooth over A
relative to k if the following condition holds: for any A-algebra C, and an
ideal N of C such that N2=0, given an A-algebra homomorphism
u:B—— C/N satisfying u(I*)=0 for sufficiently large v, if u has lifting
v:B—— C as a k-algebra homomorphism, it also has a lifting v':B—C
as an A-algebra homomorphism:

B\—“—» C/N

I \,]

k——A—— C.

Theorem 284 Letk >4 —> Band I B be as above; then the following
. three conditions are equivalent:

(1) B is I-smooth over A relative to k;

(2) if N is a B-module such that I*N =0 for sufficiently large v, then
Der, (B, N) — Der, (A4, N) is surjective;

(3) for every v>0, the mapQ,, ®,(B/I') — Qg Qgx(B/I") has a left
inverse (that is, it maps injectively onto a direct summand).
Proof. (1)=(2)IfI'N =0,set C = (B/I")*N,and letu:B— B/I*= C/N be
the natural map. Given DeDer,(A4,N), define i:4A—C by ile)=
(ug(a), D(a)). If we consider C as an A-algebra via 4, then b—(u(h),0)eC
is a k-algebra homomorphism from B to C lifting u, so that by assumption
there exists a lifting v': B— C of u as an A-algebra homomorphism; then
writing ¢’ in the form

v'(b)= (u(b), D'(b)), with D’eDer,(B, N),

we have v'g = 4, so that D'g =D.
~ (2)=(1) Suppose given a commutative diagram

B—> C/N

L

k—A—C
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with j the natural map, and u(I*)=0; if v:B—C is a k-algebra
homomorphism satisfying jo = uand vg f = Af, then setting D = 4 — vg, we
can view D as an element of Der, (A, N). By assumption there exists
D’eDer, (B, N) such that D = D’g. Using this, we set ' = v+ D’; then
vVg=vg+Dg=A—D+D=24 and ju'=u.

(2)<>(3) comes from observing the general fact that for a ring R, a
map ¢:M — M’ of R-modules has a left inverse if and only if for every
R-module N the induced map

Hom ¢ (M’', N)— Homg (M, N)
is surjective. m

Theorem 28.5. Let A be a ring, B an A-algebra, and I an ideal of B; set
B=B/I, and assume that B is I-smooth over A. Then Qg , ®,B is
projective as a B-module.

Proof. 1t is enough to show that for an exact sequence L5 M0 of
B-modules, the sequence

Homy(Qy ,® B, L) — Homg(Qy, , ® B, M)~ 0
is exact, that is that

Der ,(B, L) — Der (B,M)—0
is exact. Set C = BxLand N = Ker ¢. If we view both L and N as ideals of
C, we have [? = N?=0 and C/N ~BxM. Now for any DeDer (B, M)
we have an A-algebra homomorphism B — C/N given by

br(b, D(b))eB* M,
and lifting this to B— C is equivalent to lifting D to an element of
Der, (B,L). m

Lemma 2. Let B be a ring and I an ideal of B, and let :L— M be a
map of B-modules; assume that M is projective. Suppose also that one
of the following two conditions hold:

(o) I is nilpotent;
or (B) L is a finite B-module and I < rad(B).
Then

u has a left inverse<>u:L/IL— M/IM has a left inverse.

Proof. (=) is trivial. To prove (<=), suppose that o:M/IM — L/IL is &
left inverse of i Since M is projective, there is a map v:M — L such
that the diagram

M2, L

| |

M/IM —— L/IL
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commutes. Set w=wvu. Then w induces the identity on L/IL, so that
L=w(L)+IL, so that by NAK, L = w(L). Hence if L is a finite B-module,
then by Theorem 2.4, w is also injective. Furthermore, if I" = 0 we do the
following: if xeKerw then 0= w(x)=xmodIL, so that xelL, and we
can write x = Y a;y; with a;el and y,eL. Then
0=wx)=Y aw(y)=) ay;=xmodI’L,

so that xeI?L, and proceeding in the same way we arrive at xel’L =0.
Hence also in this case w is an automorphism of L, and w™'v is the
required left inverse of u. W

Theorem 28.6. Let k — A — B be ring homomorphisms, [ an ideal of B,
and suppose that B is I-smooth over k. Set B, = B/I. Then the following
conditions are equivalent:

(1) B is I-smooth over 4;

(2) Q ®,B, — Qp, ® B, has a B-linear left inverse.
Proof. (1)=(2) is contained in Theorem 4. Conversely, suppose that (2)
holds. For any v > 0, set B, = B/I"; then since I-smoothness and I’-smooth-
ness are the same, by Theorem 5,Qg, ® B, is a projective B,-module. Now
set I, =I/I"; then B,/I,= B, and (I,)* =0, so that applying Lemma 2, we
see that Q,, ®,B, — Qg, ®pB, has a left inverse. By Theorem 4, B is
I-smooth over A relative to k, but since it is also I-smooth over k, itisalso
I-smooth over A. W

Corollary. Let (4, m, K) be a regular local ring containing a field k; then
A is m-smooth over k<Q, ® K —Q,®,K is injective.
Proof. Let ko < k be the prime subfield. Then by Lemma 1, 4 is m-smooth
over kg, so that we need only apply the theorem to kg —k—A4. N
Let A be a Noetherian local ring, and k = 4 a subficld. We say that A
is geometrically regular over k if A® k' is a regular ring for every finite
extension field k' of k.

Theorem 28.7. Let (4, m,K) be a Noetherian local ring, and k< 4 a
subfield; then

A is m-smooth over k< 4 is geometrically regular over k.

Proof. (=) Let k' be a finite extension field of k. Then A ®,k'= A" is
mA’-smooth over k' by base-change. Let n be any maximal ideal of A’;
then A' is a finite 4-module, hence integral over A, so that n > mA’. Thus
ifwe set A” = 4, and m” = nA" then A’ —> A" is continuous for the mA4'-
adic topology of A’ and the m”-adic topology of A”, but as a localisation 4”
is 0-etale over A’, so that by Theorem 1, 4” is m”-smooth over k', and hence
by Lemma 1, A” = A, is a regular local ring. This is what was required to
prove.
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(«=) According to Lemma 1, there is only a problem if k is of characteristic
p. The proof we now give was discovered in 1977 by G. Faltings [1] while
he was still a student.

By the corollary of the previous theorem, we need only prove
that Q, &K —Q,®,K is injective. For this, we let x,,...,x,€k be
p-independent elements, and prove that dx,,...,dx,eQ,®K are linearly
independent over K. Write o, for pth roots of the x;, and set k' = k(e ... ,a,).
Then

B=A®Kk =A[T,,..., TIJ(T} —x(,..., TP —x,)

isa Noetherian local ring; write n for its maximal ideal, and Lfor the residue
field L = B/n. By Theorem 25.2 the sequence

Oﬁn/nz__’QB®BL'_—>QL_>O
is exact. Similarly,
0->m/m? —Q,®,K—Qr—>0

is exact. Now consider the commutative diagram:
O-n/n? — QL — Q.0

0-»(m/m?)®L—Q,®,L—Q®L—-0

where ¢,, @, and ¢, are the natural maps. Then by the snake lemma, we
get a long exact sequence of L-modules

0> Kerg, — Ker g, — Ker ¢,

— Coker ¢, — Coker ¢, — Coker ¢ — 0.

By assumption 4 and B are regular local rings of the same dimension, so
that rank m/m? = dim 4 = rank n/n?, so rank Ker ¢, and rank Cokerg;
are finite and equal; moreover, since L is a finite extension field of K, both
rank Ker ¢, and rank Coker ¢, are finite and equal (the Cartier equality).
Therefore by the above exact sequence, we get

rank Ker ¢, = rank Coker ¢,.
However, Coker ¢, =Qg,,®pL, and by Theorem 25.2,

Qp=BdT,; +--+ BdT,~ B,
so that both of Ker ¢, and Coker ¢, have rank equal to r. Now if we set
J=(T§ —x;,..., T? —x,) we have an exact sequence

and since this remains exact after performing ®gL, we see that Ker ¢,
is generated by dx,,...,dx, Therefore dx;,...,dx,eQ,®L are linearly
independent over L, so that they must also be linearly independent over
K as elements of Q,® K. This is what we had to prove. W
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Let B be an A-algebra, I an ideal of B, and consider B with the I-adic
topology. Let N be a B-module such that I'N = 0 for some v > 0; in what
follows we will say that a B-module with this property is discrete. An
A-bilinear map f:B x B— N will be called a continuous symmetric
2-cocycle if it satisfies the three conditions.

(@) xf(y,z)— f(xy,2) + f(x,yz) — f(x,¥)z=0 forall x,y,zeB,

B f(x,9) = [y, %),

() there exists u = v such that f(x,y)=0 if either xel* or yel*

If this holds, we set f(1,1)=r; then substituting y=z=1 in (x) gives
xt = f(x,1).
Define a product on the A-module C =(B/[*Y@ N by
(% O = (xy, — f(x, )+ x11 + y&)
for x, yeB; then C is a commutative ring with unit (1,7), and N is an
ideal of C satisfying N? =0. If we define a map 4 — C by a—(a,ar)
then this is a ring homomorphism, and the diagram

B- B/I*"=C/N

I—
is commutative; then a necessary and sufficient condition for u to have a
lifting to B—— C is that there should exist an A-linear map g:B— N
such that

(@) f(x,9)=xg(y)—g(xy)+g(x)y forall x,yeB.

For if g exists, then defining v:B — C by v(x) = (X,g(x)) we find that v
is a lifting of u, and conversely, if there is a lifting v of u one checks easily
that one can find a g as above.

We say that the 2-cocycle [ splits if there exists g satisfying («'). For
any A-linear mapg:B — N, we write dg for the bilinear map B x B
— N given by the right-hand side of (o); this satisfies (x) and (f), and
if g is continuous (that is, 3 such that g(I*) = 0), then it also satisfies (7).

Theorem 28.8. Let A bearingand B an 4-algebra with an I-adic topology.
(i) If B is I-smooth over A then every continuous symmetric 2-cocycle
f:B x B— N with values in a discrete B-module N splits.
(i) If B/I" is projective as an A-module for infinitely many n, and if
every continuous symmetric 2-cocycle with values in a discrete B-module
splits, then B is I-smooth over A.

(ii) Suppose that we are given a commutative diagram

B-5C/N

|

A—C
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with N2 =0 and u(I*)=0; then in view of N? =0, the C-module N can
be viewed as a C/N -module, and by means of u as a B-module; but then
I’N =0, so that N is a discrete B-module. Take an integer n > v such that
B/I" is projective as an A-module. Then u can be lifted as a map of
A-modules to A:B — C such that A(I")=0. For x, yeB we set

fx,y) = Alxy) — Ax)Ay),
and since A is a ring homomorphism modulo N, we have f(x,y)eN. Now
for ¢eN and xeB, by definition we have A(x)-& = x-& (both sides are
products evaluated in C), and using this one computes the left-hand side
of (&) to be zero. The symmetry (f) is obvious. Also A(/") =0, so that we
also get (y) . Thus f is a continuous symmetric 2-cocycle, and hence by
assumption there is an A-linear map g:B—— N satisfying

f 0, y) = xg(y) — glxy) + g(x)y.
Now if we set v =1+ g, we have
v(xy) = Axy) + g(xy)
= AX)A) + f(x,y) -+ g(xy)
= A} + Mx)g(y) + gx)Ay)
= v(x)o(y),
so that v is an A-algebra homomorphism, and is a lifting of v. &

Theorem 28.9 ([G1], 19.7.1). Let (4,m,k) and (B, k} be Noetherian
locai rings, and ¢: A — Balocal homomorphism; set By = Bk = B/mB
and ng = n/mB. Then the following conditions are equivalent:

(1) B is n-smooth over A,

(2) B is flat over A and B, is ny,-smooth over k.

This is an extremely important theorem, but the proof is long and
difficult, and we refer to [G1] for it. We content ourselves with proving
the following analogous theorem, which is all that we will need in what
follows.

Theorem 28.10. Let(A,m, k)bealocal ring, and Ba flat A-algebra; suppose
that B, = B®,k is 0-smooth over k. Then B is mB-smooth over A.
Proof. As one sees from the definition of mB-smoothness, it is enough to
prove that B/m*B is 0-smooth over 4/m" for every v > 0. Since B/m'B is
flat over A/m’, we can assume that m is nilpotent. Then a flat 4-module
is free (by Theorem 7.10), so that B is a projective A-module, and hence
by Theorem 8, we need only show that every symmetric 2-cocycle
f:B x B— N with values in a B-module N splits. First of all, in the case
that N satisfies mN = 0, then since f is A-bilinear f is essentially a 2-
cocycle over B, that is there is a map fy:B, x B,— N such that
S, y) = folx, y)-

Now B, is O-smooth over &, so that by Theorem 8, f splits, that is
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there is a map g,:B, — N such that f, = dg,. Thus setting g(x) = g,(X)
we get
f=dg.
In the general case, write ¢ for the natural map N — N/mN, and consider
@ef; then this splits, that is there exists g:B— N/mN such that
pof=9g.
Now since Bis projective over A, we can lift g to an 4-linear map g:B — N,
and then f — g is a 2-cocycle with values in mN. Doing the same thing
once more, we find : B — mN such that f — (g + k) is a 2-cocycle with
values in m?N. Proceeding in the same way, since m is nilpotent we finally
see that f splits. m

Exercises to §28. Prove the following propositions.
28.1. Theorem 28.10 also holds on replacing smooth by unramified or etale.

28.2. Let k be a non-perfect field of characteristic p, and aek —kP; set

A=k[X]x»-ao Then the residue field k(a'?) of A is inseparable
s over k. This ring A does not have a coefficient field containing k,
L but is 0-smooth over k.

29 The structure theorems for complete local rings

By Theorem 28.3, a complete local ring of equal characteristic A
has a coefficient field. If K is a coefficient field of 4, and x,,..., x, are generators
of the maximal ideal, then any element of A can be expanded as a power
" series in x,,...,x, with coefficients in K, and therefore 4 is a quotient of
. the regular local ring K[X,,...,X,]. We now want to extend all of this
¢ to the case of unequal characteristic.
~ We say that a DVR of characteristic 0 is a p-ring if its maximal ideal
. is generated by the prime number p. If K is a given field of characteristic
. b, then there exists a p-ring having K as its residue field. This follows by
- applying the next theorem to 4 = 2,

. Theorem 29.1. Let (A,tA, k) be a DVR and K an extension field of k; then
. there exists a DVR (B, tB, K) containing A.

.~ Progf. Let {x,},.» be a transcendence basis of K over k, and set k; =
k({x;}). We take indeterminates {X,},., over A in bijection with the
3 {x:},and set A[{X,;}1=A"and A, =(A"),,.. Now A'is afree A-module, and
hence separated for the t-adic topology; therefore, sois A;,and A; isa DVR
Wwith A,/t4, ~k,. Hence, replacing 4 and k by 4, and k,, we can assume
- that K is algebraic over k. Let L be an algebraic closure of the field of
- fractions of A, and let # be the set of all pairs (B, ), where B is an
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intermediate ring 4 < B< L and ¢:B~— K is an A-algebra homomorph-
ism, satisfying the conditions

(*) Bisa DVR and Ker ¢ =rad(B) is generated by .
We introduce an order on & by defining (B, ¢) <(C,¥) if B< C and
Y|z = @. Let us show that # has a maximal element. Suppose that

4 ={(B;, @) }ier
is a totally ordered subset of #, and set

By= U B;
then one sees easily that B, is a local ring with maximal ideal tB,. If
0t xeB, then xeB, for some i, and since B; is a DVR we can write
x = t"y with u an unit of B; and some #. From this we get x¢t"* !B, so
that B, is t-adically separated. Hence B, is a DVR, and if ¢y:B, — K is
defined to be equal to ¢; on B, then (B, ¢,)e.#. Hence by Zorn’s lemma
& has a maximal element; suppose that (B, ) is one. Then if (B} # K, take
acK — ¢(B), let f(X) be the minimal polynomial of a over ¢(B), and take
a monic f(X)eB[X] which is an inverse image of f(X). Then f(X) is
irreducible in B[X], and hence (by Ex. 9.6) also irreducible over the field
of fractions of B. Let o be a root of f(X) in L, and set B’ = B[«]; then
B’ = B[ X]/f). Therefore

B'/tB'= B[X1/t, f) = 9(B)[XIAf) = ¢(B)(a)
is a field; since B’ is integral over B, every maximal ideal of B’ contains
tB, so that B’ is a local integral domain with maximal ideal ¢B’, and is
Noetherian because it is finite over B, therefore a DVR. This contradicts
the maximality of B, so that we must have ¢(B) =K.

Remark. Since B is an integral domain containing 4, it is flat over A by
Ex. 10.2. In EGA 0y, (10.3.1), the following more general fact is proved:
let (4, m, k) be a Noetherian local ring, and K an extension field of k, then
there exists a Noetherian ring B containing A4 satisfying the three
conditions (1) rad (B) = mB, (2) B/mB is isomorphic over k to K, and (3) Bis
flat over A.

Theorem 29.2. Let (A, m,K) be a complete local ring, (R, pR, k) a p-ring,
and ¢q:k — K a field homomorphism; then there exists a local homo-
morphism ¢:R — A which induces ¢, on the residue fields.

Proof . Set S = Z,,, and let k, = k be the prime subfield. Since @, (k,) = K.
the prime number p, viewed as an element of A4, belongs to m. Hence the
standard homomorphism Z — A extends to a local homomorphism
S—+A. Now R®gko=R/pR =k is a separable extension of k,, and
hence 0-smooth over k; also R is a torsion-free S-module, hence flat over
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Rk 2 ,K R—— A/
I s\\\ ® '[‘ I \s\\ I
S — 4 S ——M/mitt

Therefore, as we discussed at the beginning of §28, we can lift
R —> A/m = K successively to R — A/m’, and using the fact that 4 =
lim A/m’, we get ¢:R — 4 making the left-hand diagram commute.  ®
—

Corollary. A complete p-ring is uniquely determined up to isomorphism by
its residue field.
Proof. Suppose that R and R’ are both complete p-rings with residue
field k; then by the theorem there exists a local homomorphism
@:R —» R’ which induces the identity map on the residue field. We have
R’ = ¢(R) + pR’, and of course ¢(p) = p, so that by the completeness of R we
£ see that ¢ is surjective, and is also injective, since p"R is not contained in
L Ker ¢ for any n. Therefore R~R. W
Let (4, m, k) be a complete local ring of unequal characteristic, and let
b p=chark We say that a subring A, = A is a coefficient ring of A if 4,
! is a complete Noetherian local ring with maximal ideal pA4, and

A=A, +m, thatis, k=A/m=Ay/pA,.
By Theorem 1 applied to the residue field k of 4, there exists a p-ring §
such that S/pS = k; write R for the completion of S, so that R is a complete
p-ring with residue field k. By Theorem 2, there exists a local homo-
morphism ¢:R — A inducing an isomorphism on the residue fields. If
we set @(R) = A, then this is clearly a coefficient ring of A. If 4 has char-
acteristic O then ¢ is injective and A, ~ R. If 4 has characteristic p" then
Ao~ R/p"R. We summarise the above discussion in the following theorem.

Theorem 29.3. 1f (A, m, k) is a complete local ring and p =char k then 4
~ has a coefficient ring A,. If 4 has characteristic O then 4, is a complete
DVR.

In what follows, in order to include the case of equal characteristic in
our discussion, we also consider coefficient fields as being coefficient rings.
From the previous theorem and Theorem 28.3, we get the following
important result,

Theorem 29.4. (i) If (A, m) is a complete local ring and m is finitely
generated, then A is Noetherian.

(ii) A Noetherian complete local ring is a quotient of a regular local
ring; in particular it is universally catenary.

(ii) If 4 is a Noetherian complete local ring (and in the case of unequal
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characteristic, 4 is an integral domain), then there exists a subring A’ = 4
with the following properties: A" is a complete regular local ring with the
same residue field as 4, and A is finitely generated as an A’-module.
Proof. We choose a coefficient ring 4, of 4. If m = (x4,...,x,) then every
element of 4 can be expanded as a power seriesinx, ..., x, with coefficients
in Ay, so that A is a quotient of Ay[X,..., X,], and hence Noetherian,
Now A4, is a quotient of a p-ring R, so that 4 is a quotient of R[ X y,..., X, ],
which is a regular local ring, hence a CM ring, and therefore according
to Theorem 17.9, A is universally catenary. To prove (iii), set dim A = p,
and in the case of equal characteristic let {y,,...,»,} be any system of
parameters of A; if A is an integral domain of characteristic 0 and
chark = p, we can choose a system of parameters {y, =p,y,,...,¥,} of
A starting with p. In either case R = 4, so that we set A" = R[y]. Then
A’ is the image of ¢:R[Y] — 4, where R[Y] is the regular local ring
R[Y]=R[Y,,....,Y,], or R[Y,,.. Y] if y =p,
and ¢ is the R-algebra homomorphism defined by ¢(¥;)=y,. Set m'=
Y1vA'. Since A/m= A'/nt, every A-module of finite length has the same
length when viewed as an A’-module. In particular A/m’4 is a finite module
over A’/m" and A is nt’-adically separated, so that by Theorem 8.4 A4 is a finite
A’-module. Therefore, we have
dimA' =dimA4 =n.
R[Y] is an n-dimensional integral domain, and if Ker ¢ 0 we would have

dim A" <n, which is a contradiction. Therefore ¢ is injective and
A ~R[Y].

Remark. In the case of unequal characteristic when A is not an integral
domain, (iii) can fail to hold. If 4 is of characteristic p™ with m > 1, then
every subring of 4 has the same characteristic p™, so cannot be regular.
Even if A has characteristic 0, the following is a counter-example: let R
be a complete p-ring and A =R[X]/(pX); then A is a complete one-
dimensional Noetherian local ring, but if a subring A’ as in (iii) were to
exist, A" would be a one-dimensional regular local ring, hence a DVR,
and since A’ has characteristic 0 and its residue field characteristic p,
A’/pA’ would be an Artinian ring, and hence also A/p4 would be Artinian.
But A/pA ~ k[X] is one-dimensional, and this is a contradiction.

The proof of Theorem 4 shows that it is sufficient to assume that p is
not in any minimal prime ideal of A.

Corresponding to the definition of quasi-coefficient field of an equi-
characteristic local ring, let us define quasi-coefficient rings in the case of
unequal characteristic. Let (4, m, K) be a possibly non-complete local ring,
and suppose char K = p. A subring S < 4 is said to be a quasi-coefficient
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ring if it satisfies the following two conditions:

(1) S is a Noetherian local ring with maximal ideal pS;

(2) K = A/m is O-etale over S/pS.
In view of (1), if A has characteristic 0 then S is a DVR, and if 4 has
characteristic p™ then § is an Artinian ring.

Theorem 29.5. Let (4, m, K) be a local ring, and suppose char K = p. Let
C c A be a subring, and assume that C is a Noetherian local ring with
maximal ideal pC, and that K = 4/m is separable over C/pC. Then there
exists a quasi-coefficient ring S of 4 containing C; moreover, if A4 is flat
over C, then it is also flat over S.

. Proof. Let {8,},.a be a p-basis of K over C/pC, and choose an inverse
' image b;eA for each f,. Setting C[{b,}]= C’, by Theorem 26.8 we see
- that C'/(mnC'y=(C/pC)[{B,}] is a polynomial ring over C/pC. Hence
if f(...X;...)is a non-zero polynomial with coefficients in C which satisfies
~ f(b;)em, then setting p” for the highest common factor of the coefficients
" of f, we have

; fX)=p fo(X) and [fo(B;)#0.

. Thus fy(b)é¢m, and we must have r>0, so that we have shown that
. mnC' =pC. Setting S=(C),~ we have Sc A, mnS=pS and S/pS =
- (C/pC)({B,}). Since C' is p-adically separated, so is S, and hence all the
. ideals of S are of the form (0) or (p”). Thus S is Noetherian, and it satisfies
. all the conditions for a quasi-coefficient ring of A. If A is flat over C, then
for any n we have

PCReA~pA.

"and hence the composite
P'COA=(P'CRS)RsA—p"SQA — p"A

is injective; but the first arrow is surjective, so that the second arrow
P"S® A— p"A is injective. By Theorem 7.7, this proves that A is flat
overS. m

All the assumptions of this theorem are satisfied by taking C to be the
image of Z,,— A, so that this proves that every local ring has a
Quasi-coefficient ring (including the quasi-coefficient field of a local ring
in the equal characteristic case).

Theorem 29.6. Let (A, m,K) be a local ring, and 4 its completion, and
8uppose char K = p. Let S be a quasi-coefficient ring of A, and write §'
for its image in A; then there exists a unique coefficient ring A, of 4
Containing S'.

Proof. Since §' is a quasi-coefficient ring of 4, we can assume that A4 is
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a complete local ring. If 4 has characteristic 0 then S is a DVR, and by
Theorem 1 there exists a complete p-ring R containing S and with residue
field K. Now K is 0-etale over S/pS, and R is flat over S, so that R is
pR-etale over S (by Ex. 28.1). Hence there exists a unique S-algebra homo-
morphism R —> A which induces the identity map on the residue
fields; we write A, for the image of R. Then R ~ 4, and A, is a coefficient
ring of 4. If A had another coefficient ring B containing § then B would
also be a complete p-ring, and for the same reason as above, there exist
unique S-algebra homomorphisms B — 4, and B — 4, so that we must
have B= 4.

If A has characteristic p" then § is an Artinian ring, and therefore
complete, so that applying Theorem 3 to S itself, we can write S = Ry/(p")
with R, a complete p-ring. Let R be a complete p-ring containing R, and
with residue field K; then by Ex. 28.1, R is pR-etale over Ry, so that there
exists a unique R,-algebra homomorphism R — 4 inducing the identity
map on the residue field K. The image i1s a coefficient ring of A
containing S; the uniqueness is proved as in the case of characteristic). m

Next we study the structure of complete regular local rings. Let (4, m, K)
be a local ring of unequal characteristic, and suppose that char K = p;
then A is said to be ramified if pem? and unramified if p¢m? We will
also say that A is unramified in the case of equal characteristic.

Theorem 29.7. An unramified complete regular local ring is a formal power
series ring over a field or over a complete p-ring.
Proof. Let R be a coefficient ring of A. In the case of equal characteristic,
R is a field, and if x,,...,x, is a regular system of parameters of A then
A=R[xy,....,x,] 2R[X,...,X,] (see the proof of Theorem 4). In the
case of unequal characteristic, R is a complete p-ring, and since pen — m?,
we can choose a regular system of parameters {p,x,,...,x,} of A4
containing p. Then 4 = R[[x,,...,x, [ ~R[X,,...,X,]. m

In the ramified case, it is not necessarily the case that 4 can be expressed
as a formal power series ring over a DVR. To give the structure theorem
in this case we need the notion of an Eisenstein extension.

Lemma 1 (Eisenstein’s irreducibility criterion). Let 4 be a ring, and
fX)=X"+a, X" '+ +a,, with g,cA. If there exists a prime ideal p
of A4 such that a,,...,a,ep but a,¢p? then f is irreducible in A[X]. If
in addition 4 is an integrally closed domain then the principal ideal (f)
is a prime ideal of A[XT.

Proof. f f is reducible, we can write f=(X"+bX""'4:+b,)
(X*+ ¢, X" 4 +¢) with 0<r<n, s=n—r and b, c;eA. Reducing
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the coefficients on either side modulo p we have
X"=(X"+b, X144+ D)X+ ¢, X 4 4 €

in (4/p)[X], so that we must have b;, c;ep for all i, j, but then a, = b,c,ep?,
which contradicts the assumption. If 4 is an integrally closed domain and
K is the field of fractions of 4, then by Ex. 9.6, f/ remains irreducible in
K[X]. Also, f is monic, so that we have f-A[X]= f-K[X]nA[X], and
this is a prime ideal of A[X]. m

Let (4, m) be a normal local ring; then an extension ring

B=A[XIASf)= A[x]
defined by an Eisenstein polynomial

f=X"+a,X""'+-+a, with gem forall ii and a,¢m?
is called an Eisenstein extension of A. By the lemma, B is an integral
domain, and is integral over 4. We have B/mB = (A/m)[ X]/(X"), so that
B has just one maximal ideal n = mB + xB. Hence B is a local ring, and
its residue field coincides with that of A.

Theorem 29.8. (i) If (A,m) is a regular local ring, then an Eisenstein
extension of A4 is again a regular local ring.

(ii) If 4 is a ramified complete regular local ring and R is a coefficient
ring of A then there is a subring 4, < A with the following properties:

(1) A, is an unramified complete regular local ring containing R, and
hence can be expressed as a formal power series ring over R;
~ (2) A is an Eisenstein extension of A,.
~ Proof. (i) Let B=A[x], and x"+a;x""' +--+4a,=0, with g;em and
- a,¢m”. Then there exists a regular system of parameters {y,,...,y; = a,}
of A with a, as an element. As we have seen above, the maximal ideal of
- B is mB +xB, but a,exB, so that {y,,...,y,_;,x} is a regular system
- of parameters of B.

(ii) Since htpA = 1, by a skilful choice of a regular system of parameters
{x1,...,x;} of A4, we can arrange that {p x,,...,x,} is a system of
- parameters of 4. If we set Ay =R[x,,...,x,] then A, is a complete
unramified regular local ring, and A is a finite module over A4, (see the
- proof of Theorem 4). We set m, for the maximal ideal of 4,. Now
A=myA + Ay[x,], so that by Theorem 8.4 (or by NAK), A =A,[x,].
Let

fX)=X"+a, X" '+ 4a, with aeAd,
be the minimal polynomial of x, over 4,. Then a,ex,;4 = m, so that

- 4,€m,. Therefore by Hensel’s lemma (Theorem 8.3), all the g,em,. We
- are left to prove that a,¢m3. Write p= Y4 b.x; with b,e 4, and express
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the b; in the form b, = @(x,), with ¢ (X)e4,[X]; then x, is a root of
F(X)= (X)X + Zg @l X)x; — p,

so that F(X) is divisible by f(X). Hence the constant term F(0) of F ig

divisible by a,. However, F(0) = )% ¢(0)x; — p,and p, x,,..., x,is a regular

system of parameters, so that F(0)¢m3, hence also a,¢m2. m

Exercises to §29. Prove the following propositions.

29.1. Let A be acomplete p-ring, y an indeterminate over A,and B= A y|;let C
= B[ x] be the Eisenstein extension of B given by x? + yx+ p=0. Then C
is a two-dimensional complete regular local ring, but is not a formal power
series ring over a DVR of characteristic 0.

29.2. In Theorem 29.2, if k is a perfect field then ¢ is uniquely determined by g,,.

30 Connections with derivations

Theorem 30.1 (Nagata—Zariski—Lipman). Let (4, m) be a complete Noether-
ian local ring with @ < A. Suppose that x,,...,x,em and D,,...,D,e
Der(A) are elements satisfying det(D;x;)¢m. Then

(i) There is a subring C = A4 such that

A=Cxy,....x]~C[X,,....X,]

Therefore x,,.. ., x, are analytically independent over C, and A is I-smooth
over C, where I =)} Ax,, and therefore also m-smooth over C.

(i) If g =)} AD, is a Lie algebra, (that is if [D;, D;]eg for all i, j) then we
can take C to be {acA|D;a=--=D,a=0}.
Proof . Letting (c;;) be the inverse matrix of (D;x;), and setting D} = =Y ¢;D;,
we have Djx; = §;;, so that we can assume that D;x; = §;;. Quite generally,
for an element tem and a derivation DeDer(A), we define a map
E(D,t):A— A by

o0 n
E(D,t)= Z —'
by our assumptions, E(D, t){a) = Z(t"/n!)D"(a) is meaningful, and one sees
easily that E(D,t) is a ring homomorphism. Now set

E,=E(D,, —x;) and C;=Im(E;);
then C, is a subring of 4, and by computation we see that

Z((=x)"\ a
(35
- ('x1)n1
— D7 +
21: (n— 1y Z
so that C, c{aeA4|Dja=0}. Conversely, if Dja=0 then E (a)=4

)

Dn+1 0
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-

go that C, ={acA|D,a=0}. Also, since for any a€A4 we have
E,(a)=amod x; A, we see that clements of A can be expanded in
power series in x, with coefficients in C,, so that A=C,[x,;]. Now
E,(x,) =x; —x; =0, 50 that x; 4 = Ker E,, and conversely, if E,(¢) =a —
x,Da+---=0 then aex;4, and therefore KerE,=x;4. Also,
ceC,<>Dc=0=E (c)=c, so that C; nx;4=0. Now we prove that x,
l!s analytically independent over C,; by contradiction, suppose that

e, X, +¢ X7+ =0 with ¢eC, and ¢, #0.

Then by Ex. 252, since x, is not a zero-divisor in A, we have c,ex; 4,
which is a contradiction. Thus if 0+ @(X)eC,[X] then ¢(x;)#0, as
equired.

If r > 1, then write D} for the restriction to C, of E, ° D,; then D;eDer(C),),
and Xx; EC1 with Dix;=¢;; for 2 <i,j <r, so that by induction we have

—C[[xz,...,x,] ~C[X,,....X.].
i) follows from this.

If g is a Lie algebra, then we first arrange as before that D;x; = d,;, and
then set [D;,D;]1=) ,a;,D, with a;eA; then [D,D;]x,=Dy5;)—
Df5,)=0, so that a;, =0, hence [D;,D;]1=0, and D(D(C,))=
D{(D,(C,))=D{0)=0. Therefore D(C)cC; for i>1, and then in
the above notation D;=D; for i>1. Thus by induction we have C
={a€eA|Dja=--=D,a=0}. m

Corollary. Let (A, m) be a reduced n-dimensional local ring containing Q,
and suppose that the completion 4 of A is also reduced. If there exist
elements D,,..., D,eDer(4) and xi,...,x,em such that det(D;x,)¢m
then A is a regular local ring and x, ..., x, is a regular system of parameters
of A. Suppose in addition that g=Y}AD; is a Lie algebra; then
k= {acA|D,a="--=D,a=0} is a coefficient field of A.

g Proof. Consider 4, with each of the D, extended to A. If (D, D=
I ZamD holds in A then it also holds in A, so that if g is a Lie algebra,
%0 is y° AD,. By the theorem, A = C[x,,...,x,], and C is isomorphic to
A\/inﬁ, so is a zero-dimensional local ring. Now by assumption C is
also reduced, so that C must be a field. Therefore A is a formal power
series ring over a field, and hence is regular, so that A is also regular. The
pther assertion is also clear. m

;;,,Remark. If we view this corollary as a criterion for regularity, then the
condition that 4 should be reduced is rather a nuisance; however, as we
lWill sec later, for a very wide variety of local rings, we have A is reduced <
4 is reduced. This is the case (corollary of Theorem 32.6) if 4 is a
localisation of a ring B which is finitely generated over a field (such an
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A is said to be essentially of finite type over K). Note also that if we star
off with a regular local ring 4, then the corollary gives a concrete methog
of constructing a coefficient field of A.

Next we consider rings which are finitely generated over a field, which
are important in algebraic geometry.

Theorem 30.2. Let k be a field, and 4 = k[x,...,x,] a finitely generateq
ring over k. If A, is O-smooth over k for every pem-SpecA, then A is (.
smooth over k.

Proof. Write k[X] for k[X,...,X,],and let I = { f(X)ek[X]| f(x) =0},
so that A =k[X]/I. Suppose that I =(f,,..., f,). Consider a commutative
diagram

4 -2 C/IN

L

k— C,
where C is a ring, and N < C is an ideal satisfying N* =0. To lift ¥ to
A~ C, we first of all choose u;eC such that Y(x;) = @(u;). If f€l then
f(u,...,u)eN. Now if we can choose y,eN for 1<i<n such that
fi{u+ y)=0 for all j, the homomorphism A — C defined by x;—u; +y;
is a lifting of y. We have f(u + y) = fju)+ Y.i-; (0f;/0X )(u)-y; so that we
are looking for solutions in N of the system of linear equationsin y,,...,

ﬁ)LW+Z< ) =0 for j=1,.

For each maximal ideal p, the local ring 4, is 0-smooth over k, so that if we
set S= (A4 —p) and S = ¢~ Y(S) then in the diagram

A, —2 (C/N)s = Cs/Ns

k Cs
there exists a W : A, — Cy lifting . From this we see that (*), as a system
ofequations in N, has a solution in Ng. If we view N as a C/N-module then
Ny = Ng. Thus the theorem reduces to the following lemma.

Lemma 1. Let A and B be rings, y: A — B a ring homomorphism, and N
a B-module; suppose that b;;e Band f;eN. If the system of linear equations

Zb,, =B (fori=1,...5)

has a solutlon in N, _,, for every pem-Spec 4, then it has a solution in N-
Proof. The assumption that there is a solution in Ny, , means
that there exist #,eN for 1 <j<n, and t,e4 — p such that

Y biym, — () =0 for 1<i<s.
7
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Now since Zp t,A = A, thereis a finite set {p,,...,p,} c m-Spec Aand a,e 4
such that

Zr: a,t, =1
v=1

Hence if we set

Ni= L e ¥la)
we get ZjbijnJ Bforlzizs ®

Theorem 30.3. Let k be a field, S = k[X,,...,X,], and I, P ideals of § such
that I < PeSpecS. Set
Sp=R, rad(R)=PR=M, and R/IR=A, rad(A)=m,
R/M=A/m=K,
and suppose that ht IR=r and I =(f,(X),..., f,(X)). Then the following
conditions are equivalent.
(1) rank (@(f 1,..., [/ 0(X4,..., X, )mod P)=r;
(2) 4 is 0-smooth over k;
(3) 4 is m-smooth over k;
(4) Q4 is a free A-module of rankn —r;
(5) A is an integral domain, its field of fractions is separable over k, and
Q,, is a free A-module.
Proof. Note that R is a regular local ring. (1)=-(2) By assumption, for a
suitable choice of r elements D,,...,D, from 6/6X,,...,0/0X, and of r
elements g,,...,g, from f,,..., f,, we have det (D;g;)¢ M. We observe
that taking feM into (D, fmod M,...,D,f mod M)eK" induces a linear
map M/M? — K", so that the images of g;,...,g, in M/M? are linearly
independent. Therefore ) 7 g;R is a height r prime ideal contained in IR,
and hence ) ;g;R = IR. Given a commutative diagram

4-25C/N

o]

-
with N?=0, write x;e4 for the image of X, and choose u,eC
such that @(u;)=¥(x;)eC/N. Then there is a homomorphism R — C
defined by X;—u;, and this induces a lifting of i to C if and only if g(u) =0
for 1 <i<r. Therefore, as in the proof of the previous theorem, we need

only solve the system of equations in unknowns y,,...,y,EN:

*) g,(u+2< )(u)y,—O for 1<i<r.

However, we view N as a C/N-module, then via i as an A-module, so
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that we can replace the coefficients (dg;/0X;)(u) of this system by
(0g;/0X ;)(x)e A. Now by assumption, one r x r minor of this r x n matrix
of coefficients is a unit of A, so that (*) can always be solved.

(2)=(3) is trivial.

(3)=(1) By §28, Lemma 1, 4 is regular, so that IR is generated by
elements forming a subset of a regular system of parameters of R, and
the image of the natural map IR — M — M/M? is an r-dimensional
K-vector space. Let ky, < k be the prime subfield; then by Theorem 26.9
K = R/M is 0-smooth over ko, so that by Theorem 25.2, the sequence

0-M/M?> ——>Qr®K — Q-0

is exact. We can write Qg = (Q, ® S)@ F, where F is the free S-module with
basis dX,,...,dX, (for example, by Theorem 25.1), and localising we get

Q= (& R)D(FAR);

hence Q, ® K =(Q, ®, K)®(F ® K). However, from
IR/IZR __’QR®A —_)QA —’0,

we get the exact sequence (I/I*)®sK —Qp®xK —Q,&®,K-0,
and if A4 is m-smooth over k then by the corollary to Theorem 28.6,
QK —Q,®K is injective, so that V =Im{([/I’)® K —Q,®K}
maps isomorphically to its projection W < F® K in the second factor
of the decomposition Q, ® K = (Q, ® K)® (F ® K). Now factor [/[?Q@K
—Q®K as the composite I/I’QK —M/M*—Q,®K; as we
have seen above, the first arrow has rank r, and the second is injective, so
that rank V=r. Now F®K=KdX,+ -+ KdX,, and if we write
(0f/0X;) mod P=a;; then W is spanned by Y7a;dX; for 1<i<t
Therefore rank («;;) = r, and this proves (1).
(2)=(5) By Theorem 25.2,
0—>IR/I*’R —Qp, ®A4A—Q,,—0

is a split exact sequence, and since Qg ® 4 is a free A-module with basis
dX,,...,dX,, the A-module Q,, is projective; but 4 is a local ring, so that
Q, is free. Also A is a regular local ring, therefore an integral domain,
and if L is its field of fractions then L is 0-smooth over 4, hence also
0-smooth over k, so that L is separable over k.

(5)=(4) By Theorem 26.2, the field of fractions L of A is separably
generated over k, so that a separating transcendence basis of L over k is
a differential basis, and rankQ, , = trdeg, L =n—r; but Q. , =Q; ®4L
and hence rank ,Q,, =rank,Q, , =n—r.

(4)=(1) In the exact sequence

IR/IPR — QO ® A —Q,, -0,
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set E=Im{IR/I’R —Q;, @ A}. Then Qz, ®A~E®A"™", so that
E~ A", and therefore E®Q K ~ K’. This gives (1). =

Remark 1. In the above proof, the equivalence of (1), (2), (4) and (5)
was comparatively easy. The proof of (3)=(1) used the corollary to
Theorem 28.6, and so is not very elementary.

Remark 2. If k is a perfect field, or more generally if the residue field K
is separable over k, then m-smoothness is equivalent to A being a regular
local ring, so that Theorem 3 gives a criterion for regularity. In the case
of an imperfect field k, if 4 is O-smooth over k then so is the field of
fractions L of A, but the residue field K is not necessarily separable over
k; for example, A = k[ X] x5, with ack — kP. For the case of an imperfect
- field k, we give a regularity criterion for A in Theorem 5.
- Quite generally, let A be a ring and P a prime ideal of A, and let
 D,,...,DeDer(4)and f,... fie A;then we write J(f4,..., f;; Dy,..., D)P)
- =(D,f;mod P). This is an s x ¢ matrix with entries in the integral domain
 A/P.
. Theorem 30.4. Let R be a regular ring, PeSpecR, and let /< P be an
-~ ideal of R; suppose that ht IR, =r.
(i) for any D,,..., D,eDer(R) and f,,... f,cI we have
rank J(fy,..., f; Dy,...,DYP) < 7;
-~ () if Dy,...,D,eDer(R) and f,,... f,el are such that det(D,f,)¢P
. then IRp=(f,..., f,)Rp and Rp/IR, is regular.
~ Proof. (i) If Q is a prime ideal of R with ] «Q < P and ht Q = r then
rank J(f,...;Dy,.. J(P)<rankJ(f},...;D,,.. )N0),
'~ and if we set QR, = m then R, is an r-dimensional regular local ring, so
. that m is generated by r elements, m = (g,,...,g,). Working in R,, we can
- Write
| fi=>g,a,; with a,eR,
50 that 1 ,
D.fi= le (D.g,)0,; modQ,
- and therefore
tank J(fi,..., fi; Dy,..., D.)Q)
: <rankJ(g,,...,4,;D,...,D)Q) <.
(if) Set M = PR,; then if det(D,f;)¢ M one sees easily that the images
inM/M?of f,,..., f,are linearly independent over Rp/M = x(M), so that
YifiRpis a prime ideal of height r, and therefore coincides with IR,.

. Also, Ry/IR, is regular. =

%
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Theorem 30.5 (Zariski). Let k be a field of characteristic p, S = k[ X ,, ..., X1,
and I and P ideals of S with I < PeSpecS. Set S, = Rand R/IR = 4, anq
suppose that htIR=r and I=(fy,...,f,). Then the following three
conditions are equivalent.

(1) A is a regular local ring.

(2) For any p-basis {u,},.r of k, define D,eDer(S) by D,(u,) =4, (the
Kronecker d) and D,(X;) =0; then there are a finite number of elementg
a, B,...,yel such that

rank J(f,..., fi; Dy Dy,..., D,,0/0X,...,0/0X )P)=r.

(3) There exists a subfield k' = k with the following properties: k” < k,
[k:kK'] < o0, and Q. is a free A-module, with

rank Q , =n—r+rankQ,.

Proof. (2)=>(1) comes from Theorem 4, (ii).

{1)=>(2), (3) If A is regular then IR is generated by r elements, and these
form an R-sequence, so that IR/I’R is a free A-module of rank r. Set
M= PR,m=M/IRand K = R/M = A/m;then the image of IR — M/M>
is an r-dimensional K-vector space, so that the natural map
(IR/I’R)® ,K — M/M? is injective. From the exact sequence

IR/I’R ~—Qp QA — Q-0
we get the exact sequence
(*)  UR/PR)®K —Qr@rK —Q,®,K 0.
Now by Theorem 25.2,
0->M/M? — Qr®gK — Q-0
is an exact sequence. The first arrow in (*) is the composite (IR/I’R) —
M/M?* — Q. ®K, and so is injective. Thus

(**) 0-(R/IPR)®K — Q@K —Q,®,K—0
is exact. Let {du,|yel’} be a basis of Q, over k; then Qg is the free
S-module with basis {du,lyel'}u{dX,,...,dX,}, and Qp=Qs&sR,
Qr R K =Qs®;K. Now reorder fi,...,f, so that f,,..., f, are gen-
erators of IR; then dfj,...,df,eQp®zK can be expressed using
dX,,...,dX, together with finitely many elements du,,...,du,, and this
gives (2). Now if we let k' be the field obtained by adjoining to k” all the
elements u, for geT other than the du,,...,du, just used, then from (**)
we see that

0->(IR/IPRIQK — Qe ®K — Q) @K -0
is also exact. In the exact sequence

(T) IR/IZR __)QR/k'@A__)QA/k'_’O’
the middle term is the free A-module with basis du,,...,du,, dX,... ,dX
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now the generators fi,...,f, of IR map to dfy,...,df,eQp ® A4, and
since these are linearly independent over K, they base a direct summand
of Qpy ®A. Thus Q. is also a free A-module, and rank Q. +r=
rank Qg = rank Q. + n.

(3)=(1) In the exact sequence (T) the two terms Qg ® 4 and Q. are
both free modules, and the difference between their ranks is r, so that
IR/I*R maps onto a direct summand of Qg ® A, which is a free module of
rank r. Thus we can choose f,,...,f,€IR such that df, ®1,...,df. ®1
base this direct summand, and then by NAK we see that Rdf, + -+
Rdf, is a direct summand of Q.. Hence there exist D,,..., D,eDer,.(R)
such that det(D; f;)¢ M. Therefore, by Theorem 4, A4 is regular. W

Corollary. Let k be a field and S=k[X,,..., X,]; let I be an ideal of S,
and set B=S/I. Define U= {peSpecB|B, is 0-smooth over k} and
Reg(B) = {peSpecB|B, is regular}. Then both U and Reg(B) are open
subsets of Spec B.
Proof. Set V= Spec B, and let V,,..., V, be the irreducible components of
V. To say that peV;nV; for i#j means just that B, has at least two
minimal prime ideals, and such points cannot belong to Reg(B), (nor a
fortiori to U). Thus first of all we can throw out the closed subset
W =1{)i+;(V;nV,), and therefore we need only prove that V;,nU and
V.nReg(B) are open in V; for each i; we fix i, and set dim V;=n — r. Then
by Theorems 3 and 4, if we let A,,...,A; denote the images in B of the
r x r minors of the Jacobian matrix (0f;/0X ), where [ =(f,,...,f,), then
V,— U is the intersection of V, with the closed subset of V' defined by the
ideal (A,,...,A;)B of B, and is thus closed in V;. Using Theorem 5, we
can argue similarly for Reg(B); the only difference is that, instead of one
Jacobian matrix, we have to consider the closed subsets of V' defined by
the ideal of B generated by all the r x r minors of the infinitely many
Jacobian matrices J(f,,..., fi; Dy Dy,...,D,,0/0X,,...,8/0X,), where
{D,,...,D,} runs through all finite subsets of the set of derivations {D.}, -
appearing in Theorem 5, (2). W

Theorems 3 and 5 contain the result known as the Jacobian criterion for
regularity in polynomial rings. There is some purpose in trying to extend
this to more general rings. In cases when the module of differentials is not
finitely generated, then the above method cannot be used as it stands, so we
approach the problem using modules of derivations.

Quite generally, let A be an integral domain with field of fractions L; then
for an A-module M, we write rank , M for the dimension over L of the vector
space M®, L.

Theorem 30.6 (M. Nomura). Let (R, m) be an equicharacteristic n-dimen-
sional regular local ring, and R* the completion of R; suppose that k is a
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quasi-coefficient field of R and K a coefficient field of R* containing
Let x,,...,x, be a regular system of parameters of R.

(i) R*=K[xy,...,x,], and if we write 0/0x; for the partial derivativeg
in this representation, then Der (R*) = Derg(R*) is the free R*-modyle
with basis 0/0x; for 1 <i<n.

(ii) The following conditions are equivalent:

(1) 0/0x; maps R into R for 1 <i<n, so that they can be considered
as elements of Der,(R);

(2) there exist D,,...,D,eDer,(R) and a,,....,a,eR such that
Dia; =0,

(3) there exist D,,...,D,eDer,(R) and ay...,a,eR such that
det(D;a;)¢m;

(4) Der,(R) is a free R-module of rank »;

(5) rank Der,(R)=n.

Proof. (i) Since K is O-etale over k, any derivation of R* which vanishes
on k also vanishes on K. If DeDerg(R*), set Dx; =y, then for any
f(x)eR*=K[x,,...,x,] we have D(f)=Y"_,(0f/ox)y, and hence
D =Y y;0/0x;. Conversely, for any given y; we can construct a derivation
by this formula, so that Derg(R*) is the free R*-module with basis
0/0x4,...,0/0x,,

(i) ()=(2)=(3) and (4)=(5) are trivial. If (3) holds then D,,..., D, are
linearly independent over R and over R*, so that by (i), any DeDer,(R)
can be written as a combination D =) ¢,D; of the D; with coefficients in
the field of fractions of R*, but since Da; =Y ¢,D,(a,) for j=1,...,n, we
have c¢;eR; therefore D,,..., D, form a basis of Der,(R), which proves (4).

S)=) If D,,..., D, are linearly independent over R then there exist
ai,...,a,eR such that det(D;a;) # 0. Therefore D,,..., D, are also linearly
independent over R*. Thus writing L for the field of fractions of R* we
can write 8/0x; =Y c;D;, with ¢;;eL. From this we get d; = ¢;;D;Xy,
so that the matrix (c;;) is the inverse of (D x,), and ¢;;€ L, where L is the field
of fractions of R; therefore (6/0x;,)(R)c LAnR*=R. ®

Lemma 2. Let R be a regular ring and PeSpec R with ht P =r; then the
following two conditions are equivalent:

(1) there exist D,,...,D,eDer(R) and f,,...,f,eP such that
det(D, f))¢P;

(2) for all QeSpec R with htQ = s <r such that Q = P and R,/QR, is
regular, there exist D,,...,DeDer(R) and g,,...,¢,6Q such that
det(D,g,)¢P.

Proof. (2) contains (1) as the special case P = Q; conversely, suppose that
(1) holds. By Theorem 4 we see that f,,...,f, is a regular system of
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parameters of Rp. If Rp/QR, is regular then we can take g,,...,9,€Q
forming a minimal basis of QRp, and then take g, {,...,9,€P such that
g1>---» g, is a regular system of parameters of Rp. Then from det(D, f;)¢ P
we deduce that det(D,g;)¢P, or in other words rankJ(gy,...,4d,;
Dy,..., D,)(P)=r. Therefore

rank J(g1,..., 94 D1,.... D)(P)=s. N

If the above condition (1) holds, we say that the weak Jacobian condition
(WJ) holds at P. If (WJ) holds at every PeSpec R then we say that (WJ)
holds in R. If this holds, then for any P, QeSpecR with Q P, setting
htQ =s we have
) there exist D,,..., D;eDer(R) and

Re/QR, is regmar@{ fivenr, f.€0 such that det(D,f;)¢P,
(the implication {(<=) is given by Theorem 4). This statement is the Jacobian
criterion for regularity. We can use Der,(R) in place of Der(R), and we
then write (WJ),.

Theorem 30.7. Let (A, m) be an n-dimensional Noetherian local integral
domain containing @, and let k = A4 be a subfield such that tr.deg,(4/m) =
r < 0. Then Der,(A4) is isomorphic to a submodule of 4***, and is therefore
a finite A-module, with
rank Der,(A4) < dim A4 + tr. deg,(4/m).

Proof. We write A* for the completion of A4; choose a quasi-coefficient
field k' of A containing k, and let K be a coefficient field of A* containing
K. Let uy,...,u, be a transcendence basis of k' over k, and x,,...,x, a
system of parameters of 4. We define ¢:Der,(4) — A"*" by ¢(D)=
(Duy,...,Du, Dx,,..., Dx,); then ¢ is A-linear, so that we need only prove
that it is injective. Suppose then that Dy, = Dx; =0 for all i and j; then D
has a continuous extension to A* and this vanishes on
B=K][x,,...,x,]. Now we do not know whether A* is an integral domain,
but it is finite as a B-module, so that any ae4 is integral over B, and if
f(X)eB[X] has a as a root, and has minimal degree, then f(a)=0,
f(@#0. Then 0=D(f(a))= f'(a)-Da, and DacA, so that, since a
non-zero element of A cannot be a zero-divisor in A%, we must have
Da=0.Hence D=0. m

Remark. If k is an imperfect field then there are counter-examples even
if k= A4/m: suppose chark=p and aek —k*, and set A =k[X, Y]y y,/
(X? + aY?); then dim 4 = 1 but rank Der,(4) = 2.

Theorem 30.8. Let (R, m) be a regular local ring containing @, and k a
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quasi-coefficient field of R. Then the following three conditions are
equivalent:

(1) (WD), holds at m;

(2) rank Der,(R) = dim R;

(3) (W), holds at every PeSpecR.
Furthermore, if these conditions hold, then for any PeSpecR, every
element of Der,(R/P) is induced by an element of Der,(R) and

rank Der,(R/P) = dim R/P.

Proof. (1)<>(2) is known from Theorem 6, and (1) is contained in (3).

(1)=(3) Write R* for the completion of R, and let K be the coefficient
field of R* containing k; then by Theorem 6, if x,,...,x, 1s a regular system
of parameters of R then the derivations d/0x; of R* = K x,,...,x,][ belong
to Der,(R)for 1 <i< n, and form a basis of it. Now let PeSpec R, and write
¢@:R — R/P for the natural homomorphism; to say that D’eDer(R/P)
is induced by DeDer,(R) means that there is a commutative diagram

R LR
wl l"’
R/P-Z5R/P.

Suppose then that D’ is given; then D'cgpeDer,(R, R/P), and this has
a unique extension to an element of Der(R* R*/PR*), so that
it is uniquely determined by its values on x,,..., x,. Therefore if we choose
by,...,b,eR such that D'(p(x;)) = ¢(b;), and set D =) b,3/0x;, then D' is
induced by D.
Now Der, (R, R/P) is a free R/P-module with basis ¢°3/0x; for | <i<n,

and Der,(R/P) can be identified with the submodule

N = {deDer,(R,R/P)|6(f) =0 for all feP}.
Therefore, if P={(f,....f,) and ht P =r then

rank Der (R/P)=n—rank J(f,..., f1;0/0x,,...,0/0x,)(P);
according to Theorem 4, the right-hand side is > n — r, and by Theorem 7
the left-hand side is <dim R/P =n —r, so we see that

rank J(f,,....f;; 0/0x,,...,8/0x,)(P)=r,

rank Der,(R/P)=dimR/P. ®

This theorem has many applications. For example, in the ring R of

convergent power series in 1 variables over k =R or C (R is denoted by
k{X,,....,X,» in [N1], and elsewhere by k{X,,...,X,}) we have
0X,/0X ;= 4, so that the Jacobian criterion for regularity holds in R. In
characteristic 0, the assumptions of the theorem are satisfied by the formal
power series ring over any field, or more generally by the formal power
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series ring R{ Y,,..., Y, ] over a regular local ring R which satisfies the
assumptions of the theorem. Even if R is not local, but is a regular ring
containing a field k of charactcristic 0, and such that the residue field at
every maximal ideal is algebraic over k, then if (WJ), holds at every
maximal ideal of R, it in fact holds at every prime ideal of R, so that the
Jacobian criterion for regularity holds for example in rings such as
k(X ....X1[Y1,..., Y] A further extension of this theorem can be
found in Matsumura [2].

Now we are going to prove the results analogous to Theorem 5 for formal
power series rings over a field of characteristic p. This is a difficult theorem
obtained by Nagata [6]. First of all we have to do some preparatory work.

Let k be a field and &’ =k a subfield; we say that &’ is cofinite in k if
[k:k] < 0. We say that a family # = {k,},, of subfields of k is a
directed family if for any «, fel there exists yel such that k, < k,nkjg.

Let K be a field of characteristic p, and k = K a subfield. Then there
exists a directed family % ={k,},.; of intermcdiatc ficlds k< k,< K
cofinite in K such that ﬂka = k(KP?). To construct this, we let B be a fixed
p-basis of K over k, and let I be the set of all finite subsets of B; then we
only need take k, = k(K”, B — o) for acl.

Lemma 3. Let K be a field, {k,},.; a directed family of subfields of K, and
set k =k, Then if V is a vector space over K, and vy,...,v,€V are
linearly independent over k, there exists ael such that v,,...,v, are also
linearly independent over k,.

" Proof. For each ael, write g(z) for the number of linearly independent
elements over k, among v4,...,v,; let o be such that g(«) is maximal, and
set g=gq(x). Now if g<n, and we assume that v,,...,v, are linearly
independent over k,, we have v,= ) 4cw; with c;ek,. Since the v, are
linearly independent over k, at lcast one of the ¢; does not belong to k,
so that we can assume ¢, ¢ k. Hence there exists fel such that c, ¢k;, and
also yel such that k, = k,nky, so that v,,...,v, and v, are linearly inde-
pendent over k.; th1s contradicts the max1mahty of g, so that g=n. N

Lemma 4. Let k < K be fields of characteristic p, and let # = {k,},.; be
a directed family of intermediate fields k = k, = K; then the following
conditions are equivalent:

(1) (Voko(K") = K(K");

(2) the natural map Q, — lim Qg is injective;

(3) if a finite subset {u;,...,u } < K is p-independent over k, then it is
also p-independent over k, for some o;

(4) there exists a p-basis B of K over k such that every finite subset of
B is p-independent over k, for some o.
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Proof.(1)=>(3) If {uy,...,u,} is p-independent over k then the p” monomials
ui-uy for 0 < v; < p are linearly independent over k(K?), so that by the
previous lemma they are also linearly independent over k,(K?) for some g,

(3)=>(4) is trivial; any p-basis will do.

(4)=(2)If 0 # weQy,, and Bis a p-basis then there is a unique expression
=Y ¢;dgyb;, with {b,...,b,} = B a finite set and ¢, K. If we take a such
thatb,,...,b,are p-independent over k, thendy, b for 1 <i<narelinearly
independent as elements of Q,, , so that @ has non-zero image in Q, .

(2)=(1) Let aeK be such that a¢k(K?); then dya # 0, so that dg,_a # 0
for some k,, in other words a¢k,(K”). ®

Lemma 5. Let k< K and F = {k,},., be as in the previous lemma, and
assume that (), k,(K”) = k(K”). Then if L is an extension field of K which
is either separable over K or finitely generated over K, we again have
k(L) = k(7).

Proof. (i) If L/K is separabie, choose a p-basis B of K/k and a p-basis C
of L/K; then in view of the exact sequence (Theorem 25.1)

O—»QK/k®L —’QL/k_"QL/K—’Oa

BuC is a p-basis of L/k. If by,...,b,eB and cy,...,c,eC are finitely
many distinct elements, then by the previous lemma, b,,...,b, are
p-independent over some k,, and from this (replacing k by k, in the above
exact sequence) we see that b,,...,b,, cy,...,c, are p-independent over k,.

(i) If L/K is finitely generated, then since any finitely generated extension
can be obtained as a succession of elementary extensions of type

(@) L = K(x) with x separable over K,
or

(b) L = K{x) with x? = aeK,
we need only consider case (b). We further divide this into two subcases:
in the first, dg,a=0, and then from Theorem 25.2 and the fact that
L~ K[X]/(X?—a)we get Q, , = (Q;, ® L) @ Ldx; from this one sees easily
that Q,, — lim Q, is injective. In the second subcase, dg,a #0 and
now we have Q; , ~((Qx, ® L)/L-dg,a) @ Ldx. Hence if we take a p-basis
of K /k of the form {a} U B’ with a¢ B', then {x} U B’ is a p-basis of L/k. Now
L/k satisfies condition (4) of the previous lemma, since for by,...,b,€B’, if
we choose « such that {a,b,,...,b,} = K is p-independent over k,, then
{x,b,...,b,} © L is p-independent over k,, W

Lemma 6. Let K be a field of characteristic p, and let {K,} be a directed
family of cofinite subfields K, = K such that (,K,= K”. Then if L is a
finite field extension of K, there exists « such that

rank; Q; x = rank ( Qg ¢
for all subfields K' = K, with [K:K'] < .
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Proof. Let K=K, K, c-*cK,=L be a chain of intermediate fields
such that K, = K,_,(x;), with x; either separable algebraic over K,_, or
xPeK;_,. Then by the previous lemma we have (),K,(K?)=K?, so
that we need only prove the lemma for ¢ = 1; hence suppose that L = K(x).
If L is separable over K then in view of Q. = Qg . ®kL, the assertion is
clear (any o will do). Thus suppose that x? = g€k, but a¢ K?; then there
exists o such that a¢K, If K'<K, then computing by means of
L=K[X]/(X? — a) we see that

QL/K' = (QK/K' ®KL @ L dx)/L'dK/K/a,

. and if rank Q¢ < o0 then rank Q k. =rank Qg .. W

Theorem 30.9 (Nagata). Let k be a field of characteristic p, S=

k[Y,,...,Y,] and PeSpecS; suppose that & ={k,},, is a directed

family of cofinite subfields of k such that [),k,=k?. Then there exists

T

' ael such that for every intermediate field kP c k' <k, with [k:k'] < o0

the following formula holds:

rank Der,.(S/P) = dim (S/P) + rank Der,. (k).
Proof. Set A=S/P, let L be the field of fractions of A, and dimA =n.
Choose a system of parameters X, ..., X, of 4, set B=k[xy,...,x,], let K

- be the field of fractions of B and my its maximal ideal. Then A is a finite

B-module, and hence [L:K] < co. If k' is an intermediate field k* <k’ c k

. with [k:k']=p" < oo, and if u;,...,u, is a p-basis of k over k', then
Loy, .ot xq,..0,%,) is a p-basis of B over C'=K[x},...,x}], in the

sense that B is the free C’-module with basis the set of p-monomials in
Ug,..., U, Xy,..., X, A derivation from B to B is continuous in the my-adic
topology, and any element of Der,.(B) is 0 on C'. Therefore Der,.(B) =
Der(B) = Homy(Qp,c, B), and Q¢ is the free B-module of rank n+r

¢ with basis du,,...,du,, dx;,...,dx,. Therefore Der,(B) is also a free

B-module of rank n + r, and the theorem holds in case A = B.

We write F’ for the field of fractions of C’, and for k,e%# we set
C,=k,[x%,...,xt] and write K, for the field of fractions of C,. As
above we have

Der,.(4) = Der¢.(A4) = Hom 4(Q ¢/, A),

- and since 4 is a finite C'-module, Q¢ is a finite A-module. Hence

Der,(4)® L= Hom (Q,¢ ® L, L) = Hom (@5, L),

‘, so that rank 4 Der, (4) = rank, Q, .. Moreover,

n + rank Der, (k) = rank Qp - = rank Qg p.,

- 80 that the conclusion of the theorem can be rewritten

rank Q; . = rank Qg p..
Any element of K, can be written with its denominator in
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kP[x?,...,x0] = BP.

However, B is faithfully flat over C,, so that K,nB= C,. From this ope
deduces easily that (), K, = K”. Thus the theorem follows from the previous
lemma.

Theorem 30.10 (Nagata’s Jacobian criterion). Let k be a field of charac.
teristic p, S=k[X,,...,X,], and let I, P be ideals of S such that
I = PeSpecS; set S, =R, R/[R=A, and suppose that htIR=r and
I=(f,..., f,). Choose a p-basis {u,}r of k, and define D eDer(k) by
D (u,)=4,,. We make any element DeDer(k) act on the coefficients of
power series, thus extending D to an element of Der(S).

Then the following conditions are equivalent:

(1) A is a regular local ring;

(2) there exists a finite number of elements «, f,...,yel such that

rank J(fy,..., f;D,,...,D,,0/0X,,...,3/0X )(P)=r.
Proof. (2)=>(1) follows from Theorem 4.

(1)=>(2) As we see from the proof of Lemma 2, we need only prove (2)
in the case I =P. We let # be the family of subfields of k obtained by
adjoining all but a finite number of {u,}, to k?; then the conditions
of Theorem 9 are satisfied, and there exists k’'e# such that

rank Der,.(S/P) = n — ht P + rank Der,. (k).
If we set [k:k']=p® then by construction there exist y,,...,7,€[" such
thatk=k'(u, ,...,u, );nowset C=k'[ X7,..., X7, so that Qg is the free S-
module with basis du,,...,du, ,dX,...,dX,, and arguing as in the proof
of Theorem 8, we see that the derivations of §/P over k' are all induced by
derivations of S over k', and thatif g,,..., g, are generators of P, we have

rankJ(g,,...,gm: D, ,.....D,, 30X ,...,0/0X,)(P)=htP. W

Remark. Conditions (1) and (2) in Theorem 10 are of the same form as
the corresponding conditions in Theorem S. Condition (3) of Theorem 5
is not applicable as it stands to the present situation, since Q- is in
general not a finite A-module. However, in general for a module M over
a local ring (R, m), if we write (in temporary notation) M = M/ ﬂ,.m"M
for the associated separated module, then for any R-module N which .1s
separated (N = N) we have Homg(M, N)=Homg(M, N). Therefore 10
the situation of the above theorem we have Der,.(S) = Homg(Qsy»S) and
Der,(A4)= Hom ,(Q 4., A), and moreover Qg is a free S-module of
rank n + rank Q.. From this, using the same argument as in the proof <_)f
Theorem 5, we see that replacing Q. by Q4 in (3) of Theorem 5, Fh‘S
condition is equivalent to (1) and (2) of Theorem 10. Verifying this 15 2
suitable exercise for the reader.
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Corollary. Let A be a complete Noetherian local ring; then Reg(A) is an
open subset of Spec A.

Proof. If A is equicharacteristic, and k is a coefficient field of A4, then A
is of the form 4 = S/I with S=k[X,..., X,], so that by Theorems 8 and
10, we see as in the corollary of Theorem 5 that Reg(A) is open.

If A is of unequal characteristic, then by Theorem 24.4, it is enough to
prove, under the assumption that A is an integral domain, that Reg(A4)
contains a non-empty open subset of Spec A. Now by Theorem 29.4, A
contains a regular local ring B, and is a finite module over B, so that if
we let L and K be the fields of fractions of A and B, then L is a finite
extension of K, and is separable since char K = 0. Replacing 4 by 4, and
B by B, for some suitable 0 # be B we can assume that A is a free B-module
(although A and B are no longer local rings, B remains regular). Suppose
thatw,,...,», are a basis of 4 as a B-module, and consider the discriminant

d = det (tryx(w;w))).

Let us prove that if PeSpec A is such that d¢P then PeReg(A). Set
p=PnB; then 4, is flat over B, and B, is regular, so that we need only
prove that the fibre A,®pk(p) is regular. Now A=Y Bw;, so that
A®«k(p) =) xk(p)@;, and in «x(p) we have det(tr(d;®;)) =d #0; hence
A®k(p) is reduced, and is therefore a direct product of fields. Therefore
Ap® k(p) is a field; this proves that Reg(A4) contains a non-empty open
subset of Spec 4. =

Exercises to §30.

30.1. Let (4,m) be a complete Noetherian local ring, and D=
(Dy, Dy,...)JeHS(A). Suppose that xem satisfies D, x = 1 and D;x = 0 for
>0, that is E,(x)=x +t, and define g = E_, by @(a)=) 7 (= x)"D,a.
Then ¢ is an endomorphism of 4 to A, with Ker ¢ = xA4; and if we set
C=Img then 4=C[x] ~C[X],

30.2. If the conditions of Theorem 5 hold, is it true that 4 is O-smooth over
the k" appearing in (3)?

30.3. Are conditions (1) and (3) of Theorem 3 still equivalent if S=
k(X ... X, ]?

304. Let R be a regular ring containing a field of characteristic 0; if (WJ) holds
in R then it also holds in the polynomial ring R[X,,..., X, ].
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Applications of complete local rings

It has become clear in the previous chapter that the complietion of a local
ring has a number of good properties. In this chapter we give some
applications of this. §31 centres on the work of Ratliff, giving charac-
terisations of catenary and universally catenary rings; Ratliff is
practically the only current practitioner of the Krull and Nagata tradition,
obtaining deep results by a fluent command of the methods of classical
ideal theory, and there is something about his proofs which is to be
savoured. In §32 we discuss Grothendieck’s theory of the formal fibre;
this book is already long enough, and we have only covered a part of the
theory of G-rings, referring to [G2] and [M] for more details. In §33 we
discuss some further important applications, again sending the reader to
appropriate references for the details.

31 Chains of prime ideals

Theorem 31.1. Let A be a Noetherian ring and PeSpec(A4). Then there are
at most finitely many prime ideals P’ of A satisfying P < P’, ht(P'/P)=1
and ht P’ > ht P + 1. (Ratliff [ 3] in the semi-local case, and McAdam [3] in
the general case.)

Proof. Let ht P=n and take a,...,a,€ P such that ht(a,, ..., a,) = n. Set
I=(ay,...,a,)and let P, = P, P,,..., P, be the minimal prime divisors of
1. In general, if {Q,}, is an infinite set of prime ideals such that @, > P and

ht(Q,/P)=1, then Q Q,= P. This is because QQ . is equal to its own

radical, hence is a finite intersection of prime ideals containing P, hence
either

ﬂQ1=P

or

mQA =0, N... nQu;

but the second case cannot occur since Q; Q; N...nQ, forA¢{i,,..., o}

Therefore if there were an infinite number of prime ideals Q; such that

Q,> P,ht(Q,/P)=1andht Q, # n + 1,then () Q; = P.Hence there would
A

exist a Q,, say Q,, which does not contain P,, ..., P,. Then P would be the
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only prime ideal lying between Qg and I. Let beQ, — P. Then Q, would be
a minimal prime divisor of I + bA =(a,,...,qa,,b),sothathtQ,<n+1,a
contradiction. W

Theorem 31.2 (Ratliff’s weak existence theorem). Let 4 be a Noetherian
ring, and p, PeSpec A be such that p =P, htp=h and ht(P/p)=d > 1;
then there exist infinitely many p’eSpec A with the properties
pcp'cP, htp’=h+1 and ht(P/p)=d— 1.

Proof. We first observe that if Pop,op,>>p,=p is a strictly
decreasing chain of prime ideals, and if p;,_, >p > p with htp'=h + 1
then ht(P/p’)=d — 1. Now there exist infinitely many p’eSpec A such
that p,_, >p >p and ht(p’/p)=1: for if p),...,p,, are a finite set of
these, let aep,_, — | ) pi. and let p,., be a minimal prime divisor of
p + aA contained in p,,; then ht(p,,, ;/p) = 1. By the previous theorem,
all but finitely many of these satisfy htp’=htp+1. =

Lemma 1. Let A be a Noetherian ring, and PeSpecA with ht P=h> [;
suppose that ueP is such that ht(u4) = 1. Then there exist infinitely many
prime ideals Q < P such that

u¢Q and htQ=h-—1.
Proof. Suppose that p,,...,p, are the minimal prime ideals of A4, and let
P,,..., P, be finitely many given height 1 prime ideals not containing u.
Let Q,,...,Q, be the minimal prime divisors of u4, so that these are also
height 1 prime ideals of A. Since h > 1, there exists ve P not contained
in any p,;, P; or Q,. Then

ht(w,v1)=2 and ht(v)=1.
Now let P,,,...,P,,, be the minimal prime divisors of (v); continuing
in the same way we can find infinitely many height 1 prime ideals not
containing u, so that if h=2 we are done. If h> 2 we set A = A4/(v) and
P = P/(v), so that ht P=h — 1, and since the image @ of u in A satisfies
ht () = 1, by induction on h we can find infinitely many prime ideals P,
of A satisfying

i¢P,cP and htP,=h-2.
The inverse image P, of P, in A, does not contain u, and from
PJ(v)= P, we have ht P,.=h—1. =

Theorem 31.3 (Rathiff’s strong existence theorem). Let A be a Noetherian
integral domain, p, PeSpecA, and suppose that htp=h>0 and
ht(P/p) =d. Then for each i with 0 <i <d the set

{p’eSpecA|p’ = P,ht(P/p’)=d —iandhtp'=h + i}
is infinite.
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Proof. Fori> 0 this foliows at once from the weak existence theorem, so
that we consider the case i =0.

Step 1. Replacing A by A, we can assume that (4, P) is a local integral
domain. Choose a,,...,aq,€p such that ht(a,,...,a)=j for j=1,...,h,
and set

a={ay,...,a,) and b=(ay,...,a,_).
Then p is a minimal prime divisor of a. Let
a=a;nna, and b=b;nnb,
be shortest primary decompositions of a and b, and let p;, p; be the prime
divisors of a; and b;, respectively; we can assume that p =p,. Suppose
that b, ,,...,b, are all the b; not contained in p. Then since
an-nanb, nenbiEp,
we can choose an element yeP contained in the left-hand side and not
contained in p. Now p; < p for 1 <j<t, so that y¢pj, and hence
a:yA=a, and b:yA=b;n-nbh,.
Now set
B=A[x,,...,x,]), where x;=a/y,
I=(x;,...,x,)B and Q=PB+1.
Step 2. We prove that
B/I~AJa;, QeSpecB and htQ=h+d.
A general element of B can be written in the form
aly’, with ae(a+ yA)’, for some v2z=0.
Now B= A4+ I, so that B/I ~ A[{In A). Now if aeln A, then there exists

v>0 such that y'aca(a+ y4)’~' Since a:y’=a; we have aea,.
Conversely, ya, < a, giving a; < In A, and hence I n A = a,. Therefore
B/l ~ Aja,.
Under this isomorphism, the prime ideals p/a; and P/a, of A/a, correspond
to (pB + I)/I and (PB + I)/I respectively in B/I; hence, setting
q=pB+I1=p+1 and Q=PB+I=P+1,
we have g, QeSpec B, with B/q = A/p and B/Q = A/P, and Q is a maximal
ideal of B. Also, B/I = A/a, and since I is generated by h elements and a;
is a p-primary ideal, we get
htQ =dim B, <h +ht(P/a;)=h+ht(P/p)=h+d.
On the other hand, from yé¢p we get q=pA[y ']nB: indeed, if
aepA[y~*1n B, then we can write « =c/y* with cepn(a+ yA)"; since
acp and y¢p, we have
pra+yA) =aa+yA) ' +y'p,
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and therefore ael + p = q. Also, A[y~1]= B[y~ '], so that
htg=htqA[y " 1]=htpA[y ']=htp=h.
However, Q/q = P/p, so that
ht(Q/q) = ht(P/p)=d,
and therefore htQ >=d + h. Putting this together with the previous
inequality, we see that ht @ =d + h.
Step 3. Forv=1,2,..., set
J,=(X15esXp-1, X, — ¥')B,
let @, be a minimal prime divisor of J, satisfying
0,=Q and ht(Q/Q,)=ht(Q/J),
and set P,=0Q,nA. We will complete the proof by showing that
P}, P,,... are all distinct, and that
htP,=h, ht(P/P,)=d for all v.
Now B= A4+ J,, so that B/Q,~ A/P, and Q/Q, ~ P/P., hence ht(P/P,) =
ht(Q/Q,) = ht(Q/J,); moreover, ht Q =d + h, and since J, is generated by
h elements,
ht(P/P))zd+h—h=d.
Therefore we have
d <ht(P/P,)=ht(Q/Q,) <htQ —htQ,=d +h—htQ,,
and so if we can prove that

(*) htQ,=htP,>h
then this will show simultaneously that ht(P/P,)=d and htP, =h.

We have already seen that q=pA[y !]1nB, so that qnA4 =p, and
hence yé¢q. Also, a; is a p-primary ideal with B/I ~ A/a,, so that I is a
g-primary ideal, and from htq=h we get

ht(I + yBy=ht(x,,...,%,, ) B=h+ 1.
In addition, we have I + yB=J, + yB, and since Q, is a minimal prime
divisor of the ideal J,, which is generated by h elements, ht Q, < h, and
hence y¢0Q,, and

0,=Q,Aly"'1nB and P,=Q,A[y 'InA4,

so that, by p.20, Example 1,
htQ,=ht P,.
Furthermore
(b:yA)B < (xq...., X4 1)B,
(b:yA) + (a,—y**WAcI,nAcQ,nA="P,,
and since all prime divisors of (b:yA) are also prime divisors of b, we
have ht(b:y4)=h—1. Now a,ep and y¢p, so that a,— y**'¢p, and
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since all minimal prime divisors of (b: yA4) are contained in p they do not
contain a, — y** 1. Therefore htP, > h. This completes the proof of (*).
Step 4. If v < u then (Q, + Q,) B, contains y* = (y* — y*)/(1 — y*#), and
therefore contains (J, + y*B)By = (I + y*B)B,, so that
ht(Q,+Q)By=zh+1, but htQ,<h,
and therefore Q,#Q,. From Q,A[y~']1=P,A[y"'] we see that
P, P,,... must also all be distinct. =

Theorem 31.4. A Noetherian local integral domain (4, m)is catenary if and
only if
htp + cohtp=dim A for all peSpecA.
Proof. ‘Only if” is trivial, and we prove ‘if’. Let dim 4 =n; if 4 is not
catenary, then there exist p, PeSpec A such that
pcP, ht(P/p)=1 but htP>htp+1.
Set ht(m/P) = d. Applying the strong existence theorem to A/p we see that
there exist infinitely many P,eSpec A4 such that
pcP,, ht(P,/jp)=1 and ht(m/P,)=4d.
However, by assumption, ht(m/P;) + ht P; = n, so that
htP,=n—d=htP>htp+1.
But according to Theorem 1, there are only finitely many such P,, and
we have a contradiction. B
If A is a ring of finite Krull dimension, we say that A is equidimensional
if dim 4/p = dim A for every minimal prime p of A.

Lemma 2. If an equidimensional local ring (4, m) is catenary then

htp, =htp, + ht(p,/p,) for all p,,p,eSpec 4 with p, cp,.
Proof. If we choose a minimal prime ideal p <p, then ht(p,/p}=
ht(m/p) —ht(m/p,) =dim A — ht(m/p,), and this is independent of the
choice of p, so that htp, = ht(p,/p). Similarly, htp, = ht(p,/p), so that
htp, =ht(p,/p,) + htp,. =

Theorem 31.5. Let A, B be Noetherian local rings, and A — B a local
homomorphism. If B is equidimensional and catenary and is flat over 4
then 4 is also equidimensional and catenary, and B/pB is equidimensional
for every peSpec A.

Proof. Write m and 9 for the maximal ideals of 4 and B. For any minimal
prime ideal p, of A there exists a minimal prime ideal P, of B lying over
po; then dim B/P,=dim B, so that dim B/p,B=dim B, and then by
Theorem 15.1 we have

ht(mt/po) = ht(M/poB) — ht(M/mB) = dim B — ht(PM/mB).
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This is independent of the choice of p,, so that A is equidimensional. If
peSpecA and P is a minimal prime divisor of pB then from the
going-down theorem (Theorem 9.5) we see that PnA =p, so that by
Theorem 15.1, ht P = ht p, and therefore ht(9R/P) = htR — ht P = htIN —
htp is determined by p only. That is, B/pB is equidimensional. Also, if
p’eSpec 4 is such that p’<p and ht(p/p’)=1, we let P’ be a minimal
prime divisor of p’B contained in P; then B/p'B is also equidimensional
and flat over A/p’, so that ht(P/P’)=ht(P/p'B) = ht(p/p’) = 1. However,
B is equidimensional and catenary, so that ht(P/P)=htP —htP' =
htp — htp’, and therefore htp =htp’ + 1, and so A4 is catenary. ®

Corollary. Let A be a quotient of a regular local ring R. If A is
equidimensional then so is its completion A*,

Proof. Let P, be a minimal prime ideal of A* and p,= Pyn 4; then
writing p = R for the inverse image of p,, we have R*/pR* = A*/p,A*.
R* is an integral domain, and therefore equidimensional, so we can apply
the theorem to R —> R* and see that R*/pR* is equidimensional. Hence

dim A*/P, = dim A*/p,A* = dim A/p, =dim 4. =

Definition. We say that a Noetherian local ring A4 is formally equidimen-
sional (or quasi-unmixed) if its completion A* is equidimensional.

Theorem 31.6. Let (4, m) be a formally equidimensional Noetherian local
ring.

(i) A, is formally equidimensional for every peSpec A.

(ii) If I is an ideal of 4, then

A/I is equidimensional < A/ is formally equidimensional.

(iii) If B is a local ring which is essentially of finite type over A (see
p.232), and if B is equidimensional then it is also formally equidimensional.

(iv) A is universally catenary.

Proof. (i) Let PeSpec(A*) be such that PnA=p, and set B=(A4%),.
Since B is flat over A4, by Theorem 22.4, B* is flat over (4,)*. Now Bis a
quotient of a regular local ring, and is equidimensional, so that by the above
corollary, B* is also equidimensional. Hence by Theorem 5, (A4,)* is also
equidimensional.

(i1) follows easily from Theorem 5.

(iii) B is a localisation of a quotient of A[X,,...,X,] for some n, so
that by (ii) we need only show that a localisation B of A[X,,...,X,] is
formally equidimensional. Now A*[X,,...,X,] is faithfully flat over
A[X,,...,X,], so that there is a local ring C which is a localisation of
A*[X,,...,X,],and alocal homomorphism B — C such that C is flat over
B, and hence C* is flat over B*. By the remark after Theorem 15.5, C is
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equidimensional, and is a quotient of a regular local ring, so that by the
corollary of Theorem 5, C* is also equidimensional; hence by Theorem 5,
B* is also equidimensional.

(iv) Any local integral domain essentially of finite type over 4 is formaily
equidimensional, and hence catenary, so that any integral domain which
is finitely generated over A is catenary. B

We say that a Noetherian local ring A is formally catenary ([G2],
(7.1.9)) if A/p is formally equidimensional for every peSpec4. One sees
easily from the above theorem that formally catenary implies universally
catenary. The converse of this was proved by Ratliff [2]. Universally
catenary is a property of finitely generated A-algebras, and we have to
deduce from this a property of the completion, so that the proof is difficult.
Before giving Ratliff’s proof we make the following observation.

Let (R, m) be a Noetherian local integral domain, K the field of fractions
of R, and R’ the integral closure of R in K; let S be an intermediate ring
R <= S = R’ such that S is a finite R-module. S is a semilocal ring, and its
completion $* (with respect to the m-adic topology, which coincides with
the rad(S)-adic topology) can be identified with R* ®,S. Now R* is flat
over R, so that Re S< R = K gives R* = §* « R* @y R' =« R* @, K. The
ring R*®zK is the localisation of R* with respect to R — {0}, so that
writing T for the total ring of fractions of R*, we can consider R* ®z K
< T, and hence R* c $* < T. This leads to the possibility that properties of
R* will be reflected in some S.

Theorem 31.7. For a Noetherian local ring A, the following conditions are
equivalent:

(1) A is formally catenary,

(2) A is universally catenary.

(3) A[X] is catenary.
Proof. (1)=>(2) was proved in Theorem 6 and (2)=-(3) is trivial. We prove
(3)=(1). Suppose then that A[X] is catenary; we will prove that A* is
equidimensional by assuming the contrary and deriving a contradiction.
The proof breaks up into several lemmas.

Lemma 3. Let (R, m) be a catenary Noetherian local integral domain, and
let R* be its completion. Let dim R = n, and suppose that there exists a
minimal prime @ of R* such that
1 <dim(R*/Q)=d<n.
For i=1,2,...,d—1, write @, for the set of peSpecR satisfying the
conditions
(1) htp =i,
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and (2) there exists a minimal prime divisor P of pR* such that Q < P and
dim(R*/P)=d —i.

Then ®; is non-empty for each i.

Proof. We work by induction on i. If 0 # aem then any minimal prime
divisor P of aR* + Q satisfies ht(P/Q) = 1, P~ R # 0 and contains a. Hence
if we set M = {PeSpec(R*)|Q <P, ht(P/Q)=1 and PR #0}, then
m = Jpear(PNR). Now ht(mR*/Q)=d > 1, so that mR*¢M, and hence
m itself is not of the form P~AR for PeM; therefore both M
and {PNR|PeM} are infinite sets. By Theorem1l, M’'={Pe
M|ht P =1} is also infinite; choose any PeM’, and set p=PnR. Then
0 <htp=htpR*<htP=1, so that htp=1, and P is a minimal prime
divisor of pR*. Since R* is catenary, dim (R*/P) = dim (R*/Q) — ht(P/Q) =
d — 1; hence pe®, and the assertion is true for i = 1.

If i > 1, take p as above, and set R = R/p and P = P/pR*; then since
R is catenary, dimR=n—1, and P is a minimal prime divisor of
R* = R*/pR*, with dim(R*/P)=dim(R*/P)=d —1<n— 1. Hence by
induction there exists a prime ideal p,=p,/p of R of height i — 1, and
a minimal prime divisor P; of p,R* such that Pc P; and dim(R*/
P)=@d-1)—(i—1)=d—i If P,=P,/pR* then P, is a minimal prime
divisor of p;R* containing P, and hence Q, and R*/P,= R*/P; is
(d —i)-dimensional, so that from the fact that R is catenary we get
htp,=htp;+ htp=i,and p,ed,, =

Lemma 4. Let (R,m) be a Noetherian local integral domain, R* its
completion, and let 0 = q; n---Naq, be a shortest primary decomposition
of 0 in R*, with P;=/q; for 1 <i<r. Suppose that P, satisfies
htP, =0, cohtP, =1<dimR.

Then there exist b, cem and de(q,N "nq,) — P, with the following
properties:

(1) b—odeqy,

(2) (b, O)R* = (b, c)R*,
and (3) ¢/b¢R but is integral over R.
Proof.

Step 1. P, is a minimal prime ideal and r> 1, so that q,...q, & P4,
and we can choose 6'e(q,n*-*nq,)— P,. Since coht P, =1, it follows
that q, + §’R* is (mR*)-primary, and hence if we set

a=(q; + SR*)NR,
then this is an m-primary ideal. Now if 0 # bea is any element, then in
R* we can write

b={+p5 with (eq, and BeR*
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Since b is not a zero-divisor in R* we have 6'¢ P, , so that setting § = ',
we get (1).

Step 2. We prove that ¢bR*. By contradiction, suppose that é =b¢
with £eR* then b—5=>b(1—&)eq,, and since b¢P, we have
1 —¢eq, cmR*, so that ¢ is a unit of R* and bedR* —q,. This
contradicts the fact that b is not a zero-divisor of R*.

Step 3. If b is a non-zero ideal of R such that m is not a prime divisor
of b then debR*. Indeed, b:m =D, so that bR*:mR* = (b:m)R* = bR*,
and so mR* is not a prime divisor of bR*; if P is any prime divisor of
bR*, then P # mR* and P # P, (in view of P, nR =0), so that coht P, =1
implies P P;, hence P q,, and there exists aeq, — P. If we write
Q for the P-primary component of bR* then ad =0eQ, so that §eQ.
Thus finally 0ebR*.

Step 4. By the previous two steps m is a prime divisor of bR. Hence
we can write

bR=InJ with I an m-primaryideal and J:m=J,
and then bR*=IR*nJR* with JSeJR* and O6¢IR*. Moreover,
(IR* + JR¥)/IR* ~(I + J)/I, so we can choose ceJ such that 6 — ceIR*.
Then

0 —ceIR*nJR* = bR*,
so that (b,c)R* =(b,5)R*, and (2) is proved. If cebR we would have
(b, 0)R* = bR*, contradicting Step 2, so that ¢/b¢R. On the other hand,
we have b—Jdeq, so that 8(b —38)=0, that is bd =% and ¢ — 5ebR*.
Set ¢ =3 + by; then ¢? = 62 + 2bdy + b?y?eb(d, b)R* = b(c, b)R*, so that

c?e(be,b>)R* N R = (bc,b?)R.
From this, we get ¢? = bcu + b?v with u,veR, which proves that ¢/b is
integral over R. Thus we have proved (3). =

Lemma 5. In the notation and assumptions of Lemma 4, set S = R[c/b];
then S has a maximal ideal of height 1.
Proof. Write T for the total ring of fractions of R*; then we can view S*
as an intermediate ring R* = $* = R*[¢/b] = T, and T is the total ring of
fractions of S*. In Lemma 4 we had Ass(R*)={P,,..,P,}, so that
setting Q, = P,T nS*, we get

Ass(S*)={Q,,...,0Q,} with htQ,=htP;
Moreover, S* is integral over R*, so that S*/Q, is integral over R*/P;,
and hence also coht Q; = coht P;. Let P* be any maximal ideal of S*
containing Q,. Then from (b,c)R* =(b,)R* we get S* =R*[c/b]=
R*[4/b], and since deq, N "nq, and d —beq, we have

8/beQ>sn--nQ, and 6/b—1€Q,,



§32 The formal fibre 255

so that @, + @, = S* for all i > 1. Therefore Q, is the only minimal prime
ideal contained in P*. However, coht Q, = 1 and P*~ R* = mR*, so that
ht P* = 1. Setting P = P*~ S, we have ht P = ht P* = 1, and P is a maximal
ideal of S, since P* is a maximal ideal of S*. =

Now we return to the proof of Theorem 7. Let A be a Noetherian local
integral domain, and suppose that A4* is not equidimensional;
then by Lemma 3, there exists a prime ideal p of 4 such that (4/p)* =
A*/pA* has dimension > 1, and has a minimal prime ideal of coheight
1. Set R = A/p; then by Lemma 4 and Lemma 5 applied to R, there exists
a subring S of the integral closure R’ of R generated by one element, and
having a maximal ideal P with ht P=1<dimR. Let f:R[X]—S bea
surjective homomorphism of R-algebras and let g be its kernel. Set
Q= f"XP). Then P=Q/q and QR =m. Since R < S we have gnR =
(0), hence ht Q = ht m + 1 and htq =1 by the remark after Theorem 15.5.
Thus htQ — htq = htm =dim 4/p > 1 = ht(Q/q), so that R[X] (and hence
also A[X]) is not catenary. M

Corollary 1. A Noetherian ring A is universally catenary if and only if
A[X] is catenary.

Proof. Suppose A[ X] is catenary and set B= A[X,,...,X,]. In order to
prove that B is catenary it suffices to prove that Bj is catenary for every
PeSpec B. Let p = PN A. Then By is a localisation of A [ X y,..., X, ]. Since
A,[X] is catenary, A [X,...,X,] is catenary by the theorem. =

Corollary 2. A Noetherian ring of dimension d is catenary if d <2 and is
universally catenary if d < 1.

Proof. The first assertion is obvious from the definitions and the second
assertion follows from the first because dimA[X|=d+1. =

32 The formal fibre

Let (4, m) be a Noetherian local ring and 4* its completion. The
fibre ring of the natural homomorphism 4 — 4* over any peSpecA4 is
called a formal fibre of A (although strictly speaking we should distinguish
between the fibre and the fibre ring, we will not do so in what follows).
If I is an ideal of 4 then (4/1)* = A*/IA*, so that a formal fibre of A/I is
also a formal fibre of 4.

Let A be a Noetherian ring and k= A a subfield. We say that A4 is
geometrically reqular over k if A® k' is a regular ring for every finite
extension k' of k (see §28). This is equivalent to saying that A4 is
geometrically regular over k for every maximal ideal p of A4.

We say that a homomorphism ¢:4 — B of Noetherian rings is
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regular if ¢ is flat, and for every peSpec A4, the fibre B®,x(p) of ¢ over p
is geometrically regular over the field «(p).

A Noctherian ring 4 is said to be a G-ring (here G stands for
Grothendieck) if 4, — (A4,)* is regular for every prime ideal p of 4; this
means that all the formal fibres of all the local rings of A are geometrically
regular.

Theorem 32.1. LetA——B 2, C be homomorphisms of Noetherian
rings; then

(i) if ¢ and ¢ are regular then so is ¥ ¢;

(i) if ¥ ¢ is regular and ¥ is faithfully flat then ¢ is also regular.
Proof. (1) Clearly y ¢ is flat. For peSpec 4, write K = k(p), and let L be a
finite extension field of K. Set B®,L =B, and C®,L = C,; then the
homomorphism v/, : B, — C, induced by ¥ is also regular. Indeed, if P is
a prime ideal of B, then C®yB, = C®(B®,L)=C®,L=C,, and
hence if F is a finite extension of x(P) then € ®, F = C®gyF; setting
PnB=Q, since B, is a finite B-module we have [k(P):k(Q)] < o,
and hence [F:x(Q)] < cc, so that C®,F is a regular ring. Now ¢ is
regular, so that B, is a regular ring, and hence by Theorem 23.7, (ii), C; is a
regular ring,

(i) The flatness of ¢ is obvious. If we let p, K and L be as above, then
C; is a regular ring and is flat over B,, so that by Theorem 23.7, (i), B,
is also regular. =

Theorem 32.2. Let ¢:A — B be a homomorphism of Noetherian rings,
and assume that ¢ is faithfully flat and regular.

(1) 4 is regular (or normal, reduced, CM, or Gorenstein) if and only if
B has the same property.

(i) If B is a G-ring then so is 4 (the converse is not true).
Proof. (i) follows from Theorem 23.7, the corollaries to Theorems 23.9 and
23.3, and Theorem 23.4,

(ii) Let peSpec 4, choose PeSpecB lying over p, and consider the
commutative diagram

() L (B

] IC
4, —L> B,
Here f is the map induced by o, and f* is the map induced by f, and
the vertical arrows are the natural maps. Now f and f are both regular,
and f* is faithfully flat, so that according to the previous theorem, « is

also regular.
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To construct an example where 4 is a G-ring and B is not, we let A =k
be a perfect field, and B a regular local ring containing k. Then k — B is
certainly faithfully flat and regular, and k is a field, and so trivially a G-ring.
However, there are known examples in which B is not a G-ring. (See the
appendix to [N1]; a counter-example is provided by the ring R in (E3.1) if
char k= p, and by R in Example 7 if char k = 0. In (E3.1) the ficld k is not
perfect, but R is geometrically regular over k.)

Theorem 32.3. A complete Noetherian local ring is a G-ring.

Proof. Let A be a complete Noetherian local ring and peSpec 4; set
B=A,, and let B* be the completion of B. We prove that B—— B* is
a regular homomorphism; that is, for any prime ideal p’ of B, we need to
show that B* ®gx(p’) is geometrically regular over k(p'). However, A/p' ~ 4
is also a complete local ring, so that we can replace A by A/p’n A and
reduce to the case p’ =(0). Thus assume that 4 is an integral domain, and
let L be the common field of fractions of 4 and B; we must show that
B* ®g L is geometrically regular over L.

The problem can be further reduced to the case when A is a regular
local ring. In fact, by Theorem 29.4, A contains a complete regular local
ring R and is a finite module over R. Set pnR=gq, R,=S and
B'= A, = A®gS:then B’'is asemilocal ring, and Bisalocalisation of B’ ata
maximal ideal, so that B* is one direct factor of B'* = B’ ®;S*. Write K for
the common field of fractions of R and S.

B* = B'®,S* ~—>1{*
A-—> ; = A®gS —B=4,—L
11 — l =R, > IT(
Now B* ®gL can be written as B* ®g L, and it is hence a direct factor of
B*®y L=5S*®sL=(5*®sK)®L, so that we need only show that
§* ®sK is geometrically regular over K.

Now R, S and S* are regular local rings, and §* ®K is a localisation
of $*, so is a regular ring. Hence if char K = 0, there is nothing to prove.
We assume that char K = p in what follows. Then R has a coefficient
field k, and can be written R =k[X,,...,X,]. Choose a directed family
{k,} of cofinite subfields k,ck such that (),k,=k”, and set R,=
k,[X%,...,XE]; write K, for the field of fractions of R,. Then one sees
easily (compare the proof of Theorem 30.9) that [,K, = K”.

We set q,=qNR,; then since R, > R”, we sec that g is the unique
prime ideal of R lying over q,. Hence if we let S,=(R,), then S=
R, = R®g,S, and S is a finite module over S,. Hence $* = S®g S5 let us
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prove that S* is 0-smooth over S relative to S, (see §28). Suppose we are
given a commutative diagram of the form

S — St L C)N

R

§,—S ——C,
where C is a ring and N is an ideal of C with N?=0. If there is a lifting
v:§* — C of v as a homomorphism of S.-algebras, set w=1"\sx, and
let " =u@w:S* = S®;, S — C; then one sees easily that v" is a lifting
of v over S. Hence S$* is 0-smooth over S relative to §,. Now for
QeSpec(S*), let QNS =(0); then (S*), is a local ring of §* ®sK, and
conversely, every local ring of S* ®K is of this form. From the diagram

§* ——(8*); —— C/N

L]

§ — K —C

o

Sa I Km
one sees that (S*), is 0-smooth over K relative to K,. Set E = (5*), and

m =rad (E); then E is m-smooth over K relative to K, so that according
to Theorem 28.4,

Qi x, Ok(E/m) — Qe ®(E/m)
is injective for every a. Moreover, since (},K, = K?, by §30, Lemma 4,
QK_" 11_11_1 QK/K,
is injective, and hence
Q®(E/m) — 1<1r_n (QK/K, ®(E/m))
is also injective. Therefore, from the commutative diagram
Qg ®k(E/m) — Qp ® (E/m)
! !
Li{__n (QK/KXC@(E/T"[))_~+ ]{il’l (QE/K1®(E/TY[)),
we finally see that Qg ® (E/m)-—Q®(E/m) is injective. Hence it
follows from the corollary to Theorem 28.6 that E is m-smooth over K, and

thus is geometrically regular. Since E is an arbitrary local ring of $* @K,
we sec that S* ® K is geometrically regular over K. B

Theorem 32.4. Let A be a Noetherian ring; if A4, — (A4, )* is regular for
every maximal ideal m of 4, then A4 is a G-ring.
Proof. Since (A,)* is a G-ring, by Theorem 2, A4, is also a G-ring. For
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any peSpec 4, if we let m be a maximal ideal of 4 containing p then 4,
is a localisation of the G-ring 4, and hence 4, — (4,)* is regular. =

Theorem 4 makes it much easier to distinguish G-rings. For example,
the next theorem is based on Theorem 4.

Theorem 32.5. Let A be a Noetherian semilocal ring; then a sufficient
condition for 4 to be a G-ring is that if C is a finite 4-algebra which is
an integral domain, m is a maximal ideal of C and we write B= C_, then
(B*), is a regular local ring for every QeSpec(B*) such that QB =(0).

Remark. It is easy to see that the condition is also necessary.

Proof. By the previous theorem, we need only show that under the given
condition, 4 — A* is regular. Let peSpecA4, and let L be a finite
extension of k(p); we prove that 4*®,L is regular. Suppose that L=
k(p)(fy,-..,t,); then multiplying each ¢; by an element of 4/p we can
assume that ¢; is integral over A4/p, so that if we set C =(A4/p)[t;,...,1,],
then C is a finite 4-module, and the field of fractions of C is L. Now
C* = A4*®,C, and if we write m,,..., m, for the maximal ideals of C and
set B;=C,, then C*=Bfx-xBF We can identify any local
ring of A*®,L = C* ® - L with the localisation (B¥), of one of the factors
B¥ at some prime ideal Q of B¥ with 9 n B, =(0), and by assumption this is
regular. Hence A*®, L is a regular ring. =

Theorem 32.6 (H. Mizutani). Let R be a regular ring. If the weak Jacobian
condition (WJ) of §30 holds for R[X,,..., X, ]foreveryn > 0, then Risa G-
ring,

Progof. Since (WJ) is inherited by any localisation we can assume that R is
local. We prove that the condition of Theorem 5 holds. Set R,=
R(X,,...,X,]. Any integral domain C which is finite as an R-module can be
expressed as C=R,/Q with QeSpec(R,) for some n. Let m be a maximal
ideal of C, M the maximal ideal of R, corresponding to m, and S=(R,)y;
then it is enough to show that (S*),/Q(S*), is regular for every PeSpec(S*)
with PnS=0S. If htQ=r then htQ(S*),=r, and by assumption
there exist D,,...,D,eDer(R,) and f;,..., £,eQ such that det(D,f;)¢Q.
Now D, has a natural extension to S, and then to §*, and since PnR,=0Q,
we have det(D,f;)¢P, so that by Theorem 30.4, (5*),/Q(S*); is regular. I
Corollary. A ring which is finitely generated over a field, or a localisation
of such a ring, is a G-ring,.

Proof. 1t follows from the definition that a quotient or localisation of a
G-ring is again a G-ring, so that we need only show that for a field k, the
ring k[X,,...,X,] is a G-ring; but by Theorems 30.3 and 30.5, (WJ) holds
in k[X,,...,X, ], so that k[ X,...,X,] is a G-ring by the theorem. =

Remark 1. The local rings which appear in algebraic geometry are essen-
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tially of finite type over a field, and therefore G-rings. Hence for these
rings, properties such as reduced and normal pass to the completion.

Remark 2. If R is a regular ring containing a field of characteristic 0, and
(WJ) holds in R, then by Ex. 304, it also holds in R[X,..., X,]. Hence
R and R[X,...,X,] are G-rings. In particular by Theorem 30.8, rings of
convergent power series over R and C are G-rings.

A theorem proved by Grothendieck asserts that if 4 is a G-ring, then
so is A[ X]; the proof is very hard, and we omit it, referring only to [M],
Theorem 77. The analogous statement for A[X] remained unsolved for
a long time, but was recently proved for a semilocal ring 4 by C. Rotthaus
[3]. In the non-semilocal case she proved in [4] that, if 4 is a finite-dimen-
sional excellent ring containing the rational numbers, then A X | is excel-
lent. On the other hand, Nishimura [3] showed that there exists a G-ring
A such that A[X] is not a G-ring.

Nagata [8] studied the condition that Reg(4) is open in Spec A; putting
together Nagata’s work with his own theory of G-rings, Grothendieck
gave the definition of excellent ring in [G2].

Definition. A Noetherian ring A is excellent if it satisfies the following
three conditions:

(1) A is universally catenary;

(2) Ais a G-ring;

(3) Reg(B) =SpecB is open for every finitely generated A-algebra B.
A Noetherian ring satisfying (2) and (3) is said to be quasi-excellent.

One can prove that the classes of rings satisfying each of (1), (2) and (3)
are closed under localisation, finitely generated extensions and passing
to quotients. It can also be proved that (2) implies (3) for semilocal
Noetherian rings. A complete Noetherian local ring is excellent, as are
practically all Noetherian rings in applications. For more information on
excellent rings, see [M], Ch. 13, or [G2].

R.Y. Sharp [5] defined the notion of an acceptable ring, replacing
condition (2) by the condition that all formal fibres of all localisations of
A are Gorenstein, and replacing Reg(B) by Gor(B) in (3), and showed
that the resulting theory is analogous to the theory of excellent rings (see
also Greco—Marinari [1], Sharp [6]).

Using his cohomology theory, M. André [1] proved the following
theorem. Let 4, B be Noetherian local rings, and ¢:4 — B a local
homomorphism; suppose that A4 is quasi-excellent and B is niz-smooth over
A, where my=rad(B); then ¢ is regular. This is an extremely strong
theorem; the result of Rotthaus mentioned above also makes use of this.
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33 Some other applications

Dimension of intersection

Let k beafield and V and W irreducible algebraic varieties in affine
n-space over k. (Here one may either assume that k is algebraically
closed and identify the varieties with the corresponding subsets of k", or
take the scheme-theoretic viewpoint.) Then it is well known that every
irreducible component of VAW has dimension = dim V +dim W —n.
Algebraically, this is equivalent to the following theorem.

Let P and P’ be two prime ideals in the polynomial ring R =
k[X,,...,X,]overafield k, and let Q be a minimal prime divisor of P + P’.
Then

dim R/Q > dim(R/P) + dim(R/P'} — n,
or equivalently,

(*) htQ<htP+htP.

The idea of the proof consists of transforming the intersection VN W in
k" into the intersection An(V x W) in k*", where A is the diagonal, and
availing oneself of the fact that A is defined by n equations x; — y, =0, for
i=1,...,n(see [M], p. 93).

Now in algebraic geometry, the theorem remains true if one replaces
affine n-space by a non-singular (smooth) variety; namely, if V and W are
irreducible subvarieties of a non-singular variety U, then every irreducible
component of ¥ W has dimension > dim V + dim W — dim U. Algebrai-
cally, the inequality (*) still holds if R is an arbitrary regular local ring
containing a field. One can easily reduce to the case where R is complete,
and then by LS. Cohen’s structure theorem R is isomorphic to
k[X,,..., X,],and so one can apply the same diagonal trick. Thus it is clear
that (*) holds in an arbitrary regular local ring of equal characteristic. How
about the unequal characteristic case? If R is unramified, then its
completion R* is a formal power series ring over a DVR by Theorem 29.7,
and a slight modification of the argument used in the case of k[ X 4,..., X, ]
suffices. When R is ramified, by Theorem 29.8, R* is of the form
D[X,,...,X,]/(f), where D is a complete DVR and f is an Eisenstein
polynomial. Using this, and applying his deep results on intersection
multiplicity, J.-P. Serre proved the inequality (*) for general regular local
rings R in Chapter V of his book [Se]. We recommend this excellent book
to the reader.

Integral closure of a Noetherian integral domain

Let A be a Noetherian integral domain with field of fractions K, and let
A’ denote the integral closure of 4 in K (the so-called derived normal
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ring of A4). Is 4" a finite module over 4?7 This is a difficult question, and
the answer is no in general. When A is finitely generated over a field k (the
case encountered in algebraic geometry) it is easy to prove [initeness.
We need the following two lemmas.

Lemma 1. Let A be a Noetherian normal integral domain with field of
fractions K; suppose that L is a finite separable extension of K, and let A’ be
the integral closure of 4 in L. Then A4’ is a finite 4-module.

Proof. By enlarging L if necessary we can assume that L is a Galois
extension of K. Write G = {o;]1 < i < n} for the Galois group of L/K, where
n=[LK], andlet y,,..., y, be elements of 4’ which form a basis of L over
K.IfzeA and z =) i¢;Y; with c,eK, then g,z = Y ;¢c;0,y;fori=1,...,n,
and hence ¢; = C;/D, where D = det(o;y;) and C;e 4'. Putting d = D* we see
deK. In fact it is easy to see that d = (tr; x(y;y;)) is the discriminant of the
separable K-algebra L (see p. 198). It follows thatd # 0anddc;e A'nK = A4
for all j. Therefore A’ is contained in the finite 4-moduie ) ;4d 'y, so that
A’ itself is finite over A.

Lemma 2 (Normalisation theorem of E. Noether). Let 4 =k[x,...,x,]
be a finitely generated algebra over a field k; then there exist y,,..., y,€4
which are algebraically independent over k such that A4 is integral over
k[yl""’yr]'

Proof. Here we assume that k is an infinite field, referring the reader to [M],
(14.G) or [N1], (144) for the general case. Suppose x,,...,x, are
algebraically dependent over k, and let f(x,,..., x,) = 0 be arelation, where
f(X,,..., X,)isanon-zero polynomial with coefficients in k. Write d for the
degree of fandlet f,(X,,..., X,) be the homogeneous part of f of degree d.
Take ¢y,...,c,- €k such that f (c,,...,¢,_,, 1) #0, and set y, = x; — ¢;x,
fori=1,...,n—1. Then

0=f(x1,...,Xn)=f(y1+01X,,,...,y"_1 +cn_1xn’xn)
zfd(cla---’c,,_l,1)xﬁ+g1x:_1+...+gd’

with g,ek[y,,..., V.- 1], so that x, is integral over k[y,,...,y,_,] Then
X;=y;+¢x,, for i=1,...,n—1, are also integral over k[y;,...,Vo-11
hence A is integral over k[y,,..., v,—;]- Thus the assertion is proved by
inductiononn. =

Now let 4 be a finitely generated integral domain over k, with field of
fractions X and derived normal ring A'. Take y,..., y,€4 asin Lemma 2,
so that A’ is also the integral closure of k[y,,...,y,] in K. Set K'
=k(y;,-.-,y,) Then K is a finite algebraic extension of K. If this extension
is separable then A’ is finite over k[y,,..., y,] by Lemma 1, hence is also
finite over A. If K is inseparable over K', let p = char K. Then there is a
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purely inseparable finite extension K” of K’ such that K(K") is separable
over K”. Therefore it suffices to prove that the integral closure of
k[yy,...,y.Jin K" is finite over it. But K” is contained in a field L which is
obtained by adjoining to K’ the gth roots of a finite number of elements
a,,...,a; of k and also the gth roots of y,,..., y,, where ¢ is a sufficiently
high power of p. Then the integral closure of k[y,,...,y,] in L is
K[yl ...,y!], where k'=k(al,...,al™), and it is clear that
k'[yifa, ... y!4] is finite over k[y,,...,¥,]. This completes the proof of
finiteness of A" over A.

When A4 is a complete Noetherian local domain one can prove the
finiteness of A’ along the same line as above. Using Theorem 29.4, (iii),
instead of Lemma 2, one reduces to proving the finiteness of the integral
closure of a complete regular local ring A in a finite extension L of the field
of fractions K of 4. If char K = 0 this is proved by Lemma 1, so that we can
assume charK =p>0. Then A =k[X,,..., X,] is a formal power series
ring over a field k. We can also assume, as in the above proof, that L is
purely inseparable over K, so that there is a power g = p™ of p such that
L < K4 But there is one problem. Since a formal power series has infinitely
many coefficients, it may not be possible to find a finite extension k, of k
such that L < ko ((Y)), where Y =(Y,,..., Y,), Y, = X and k,((Y)) denotes
the field of fractions of k,] Y. One can overcome this difficulty either by an
argument of Nagata in [N1,p.113], or (following J. Tate) by induction on n
as follows:

We may assume that Y;= X,;!e L (1 <i< n). Since A is normal we have
A'={feL|f%A}.Set P=X,A4,Q =Y, A';then Q = { feL| f*e P}, so that
Q is the only prime ideal lying over P. Now A, and 4, are DVRs by
Theorem 11.2(3), and their fields of fractions are L and K respectively. Let
x’ and « be their residue fields; then [x’:x] <[L:K] by Ex.10.8. Since 4'/Q
is contained in the integral closure of 4/P=k[X,,...,X,] in k', by the
induction hypothesis, 4'/Q is finite over 4/P. Since

Qi/ i+1=Y1iA//Y1i+1A/2A//Q and Qq=PA/

we see that A'/P A’ is finite over A/P. Moreover, A’ is separated in the P-adic
topology (which is the same as the Y;-adic topology), because
A <k'[Y,,...,Y,]. Since A is P-adically complete, A’ is finite over 4 by
‘Theorem 84. W

From this result it is easy to derive the following theorem: If 4 is a
Noetherian local ring whose completion A* is reduced, then the integral
closure A" of A inits total ring of fractions is finite over 4. See [M] p. 237.

On the other hand, if 4 is not reduced and if the maximal ideal m contains
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a regular element (that is, a non-zero-divisor), then A4’ is not finite over 4
(Krull [2]). In fact, if x # 0 is nilpotent, take a regular element s such that
x¢sA; (it is possible to find such an s since () m’ = (0)). Then the elements
x/s’ (for j=1,2,3,...) belong to A". If A’ is finite over A then there must be
some integer n such that s"(x/s’)e 4 for all j. But then xe( ), 54 =(0),a
contradiction. W

Suppose (4, m) is a one-dimensional Noetherian local integral domain.
Then A* is reduced if and only if A’ is finite over A (Krull [2]). In fact, if A’ is
finite over A then it is a semilocal ring, and for each maximal ideal P of A’
the local ring(A4'), 1s a DVR. The rad(A4’}-adic topology of 4’ coincides with
the m-adic topology, and the completion A'* of A" with respect to this
topology is a direct product of complete DVRs by Theorem 8.15, hence is
reduced. On the other hand it coincides with A* ®, A’ by Theorem 8.7.
Since 0—+A4 — A’ is exact, 0= A* — A*® A’ is also exact. Therefore
A* is reduced. The converse holds, as already mentioned, without the
restriction on dimension. MW

Rees [9] proved that a reduced Noetherian local ring 4 has reduced
completion A* if and only if for every finite subset I" of the total ring of
fractions K of A, the integral closure of A[T'] in K is finite over A[I].

Akizuki [1] constructed the first example of a one-dimensional Noeth-
erian local integral domain with non-reduced completion (see also Larfeldt-
Lech [1]). To avoid such pathology, Nagata [N1] defined and studied the
class of pseudo-geometric rings, which were called ‘anneaux universelle-
ment japonais’ by Grothendieck ([G1], [G2]). These are now known as
‘Nagata rings’ ([M], [B9]). A Noetherian ring A is called a Nagata ring if
for every prime ideal P of A and for every finite extension field L of the field
of fractions x(P) of A/P, the integral closure of A/P in L is finite over A/P.
For the basic properties of Nagata rings, see [M], §31. An alternative
definition is the following: a Noetherian ring A is a Nagata ring if (1) for
every maximal ideal m the formal fibres of 4, are geometrically reduced,
and (2) for every finite 4-algebra B which is an integral domain, the set
Nor(B) = {PeSpecB| By is normal} is open in SpecB. The equivalence of
these two definitions can easily be proved from [G2], (7.6.4) and (7.7.2).

Although the integral closure A’ of a Noetherian integral domain 4 may
fail to be finite over 4, it is a Krull ring by the theorem of Mori—Nagata
mentioned in §12. Because of its importance we quote here the theorem in
full.

Mori—Nagata integral closure theorem. Let A be a Noetherian integral
domain and let A’ be its derived normal ring. Then (1) A’ is a Krull ring, and
(2) for every prime ideal P of A4 there are only finitely many prime ideals P’ of
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A’ lying over P, and for each such P’ the field of fractions x(P’) of A'/P’ is
finite over k(P).

For a proof, see [N1],(33.10). This proof depends on I.S. Cohen’s structure
theorem. There are also more recent proofs which do not use the structure
theorem (Nishimura [2], Querré [1], Kiyek [1]).

Note that 4’ is Noetherian if dim A4 < 2. This follows easily from the
above theorem, Theorem 11.7 (Krull-Akizuki) and Theorem 12.7 (Mori—
Nishimura). When dim A =3, Nagata constructed a counter-example
([N1], p. 207).

Theorem 28.9, which is due to Grothendieck and is not proved in this book,
was given a new proof by Radu [5]. This interesting proof depends heavily
on L.S. Cohen’s structure theorem. The same remark applies also to André’s
proof [1] of the theorem mentioned at the end of §32.

I.S. Cohen’s structure theorem is also at the basis of the theories of
canonical modules ((HK]) and of dualising complexes (Sharp [3], [5]).
Here, the fact that a complete Noetherian local ring is a quotient of a
Gorenstein ring is important.
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Tensor products, direct and inverse limits

Tensor products

Let 4 be a ring, L,M and N three A-modules. We say that a map
@:M x N — L is bilinear if fixing either of the entries it is A-linear in the
other, that is if

plx +x,y) = o(x, ) + o(x, y), olax,y)=ap(x,)),
ox,y+y)=0lx, )+ o(x,y), o(x,ay)=ap(x,y).
Write Z(M,N;L) or ¥ ,M,N;L) for the set of all bilincar maps from
M x N to L; as with Hom (M, L), this has an 4-module structure (since
we are assuming that 4 is commutative).

If g:L—L is an A-linear map and ¢e¥(M,N;L) then
gope ¥ (M, N; L). Bearing this in mind, for given M and N, consider a
bilinear map ® :M x N — L, having the following property, where we
write x ® y instead of ®(x, y): for any A-module L and any e % (M, N; L)
there exists a unique A-linear map g:L, — L satisfying

gx®y) = @(x,y).
If this holds we say that L, is the tensor product of M and N over A, and
write L, = M ®,N; we sometimes omit 4 and write M @ N. As usual with
this kind of definition, M ®, N, assuming it exists, is uniquely determined
up to isomorphism. To prove existence, write F for the free 4-module
with basis the set M x N, and let R = F be the submodule generated by
all elements of the form

(x+x, ) ==&,y (ax,y)—a(x,y)
ey +y) =y —(xy), (x,ay)—alx,y).
Then set L, = F/R and write x® y for the image in L, of (x, y)eF. It is
now easy to check that L, and ® satisfy the above condition.
Note that the general element of M ®,N is a sum of the form ) x;® y;,
and cannot necessarily be written x® y.
For A-modules M, N and L the definition of tensor product gives:
Formula 1. Hom (M ®,N, L)y~ ¥(M,N; L).
The canonical isomorphism is obtained by taking an element ¢ of the
right-hand side to the element g of the left-hand side satisfying g(x ® y) =
(X, y).

266
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We can define multilinear maps from an r-fold product of A-modules
M,,...,M, to an A-module L just as in the bilinear case, and get modules
LM,,...,M;L) and M, ®, -®,M,; the following ‘associative law’
then holds:

Formula 2. MMM =MOM QM =M, (M Q,M").

For example, for the first equality it is enough to check that the trilinear
map MxM xM' —MM)®M” given by (x,y,2)—(x®y)®z
has the universal property for trilinear maps, and this is easy. The following
Formulas 3, 4 and 5 are also easy:

Formula 3. M®N~N@,M (by x® yy® x).

Formula 4 M®,A4=M.

Formula 5. ((P,M ;) ®4N = P,(M,; ®,N).

If ft{M—-—>M' and ¢g:N-—N' are both A-linear then (x,y)—
f(x)®g(y) is a bilinear map from M x N to M'®,N’, and so it defines a
linear map M ®,N — M'®,N’, which we denote f®g. From the
definition we have:

Formula 6. (f® g)(Zixi®yi) = Zif(xi)®g(yi)-

In particular, if both fand g are surjective then we see from this that f® g is
surjective; its kernel is generated by {x ® y|f(x) = 0 or g(y) = 0}. Indeed, let
T< M ® N be the submodule generated by this set; then T< ker(f®g) so
that f®g induces a linear map o:(M ® N)/T — M’ ® N’; furthermore,
we can define a bilinear map M’ x N' —> (M ® N)/T by

(x,y)—=(x®y mod T), where f(x)=x,g(y)=V,

since a different choice of inverse images x and y leads to a difference
belonging to T. This defines a linear mapf:M' '@ N'— (M Q N)/T,
which is obviously an inverse of . We summarise the above (writing 1 for
the identity maps):

Formula 7. Suppose given exact sequences

0K -—>M-M -0 and 0-L-N -5 N S0;
then M'® N’ ~(M ® N)/T, where
T=(®)NK®N)+(1®) (ML)
Formula 8 (right-exactness of the tensor product). If
M, LM, My -0
is an exact sequence then so is

M, N2 M, @ N5 M, @ N 0.

In general, even if f:M —> M’ is injective, f®@ 1:M @ N — M'® N need
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not be. (Counter-example: let 4 =7 and N = Z/nZ for some n> 1. Let

f:Z — 7 be multiplication by n; then Z@® ;N ~ N #0,but f ® NN
is the zero map, and so is not injective.) However, if Im f is a direct

summand of M’ (in which case we say that the exact sequence 0 - M N
M — M'/M -0 splits), then there is a map g:M'— M such that
gf =1
AN ®)=9/@1=1®1

is the identity map of M ® N, and hence f ® 1 is injective, and the sequence
0-MIN—MN—(M/M)®N-0 is split. In particular if 4
is a field then any submodule is a direct summand, so that the operation
® N takes exact sequences into exact sequences; in other word, ® N is
an exact functor. For an arbitrary ring 4, an A-module N is said to be
flat if ® N is an exact functor. For more on this see §7.

Change of coefficient ring

Let A and B be rings, and P a two-sided A-B-module; that is, for ac4,
beB and xeP the products ax and xb are defined, and in addition to
the usual conditions for 4-modules and B-modules we assume that

(ax)b = a(xb).

Then multiplication by an element beB induces an A-linear map of P
to itself, which we continue to denote by b. This determines a map
1®b:M®,P— M®,P for any A-module M, and by definition we
take this to be scalar multiplication by b in M ®,P; that is, we set
O y:®x)b=Y y,®x;b for y,eM and x;eP.

If N is a B-module, then for oeHomg(P, N) we define the product ¢a

of ¢ and ae4 by
(pa)(x) = p(ax) for xeP;
we have pacHomgy(P, N), and this makes Homg(P, N) into an A-module.
Formula 9. Hom (M, Homg(P, N)) ~ Homyz(M ®, P, N).
Formula 10. (M ®,P)®sN ~ M ®,(P ®,N).

Both of these are easy to prove, and we leave them to the reader.
Formula 10 generalises Formula 2.

Given a ring homomorphism A:4 — B, we can think of B as a two-
sided A-B-module by setting ab = A(a)b; then for any A-module M, M ®,B
is a B-module, called the extension of scalars in M from A4 to B,
and written M ). For 4-modules M and M’ the following formula holds, so
that tensor product commutes with change of scalars.

Formula 11. M ®,B)®s(M' ®,B)=MR,M')®,B.
Indeed, using Formulas 10, 4 and 2, the left-hand side is equal to
M @,(B&p(M' ®4B)) =M @,(M ®,B)=(MOM')®,B.
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Tensor product of A-algebras

Given a ring homomorphism A; 4 — B we say that B is an 4-algebra. Let
B’ be another A-algebra defined by A':4 — B’. We say that a map
f:B— B’ is a homomorphism of A-algebras if it is a ring homomorphism
satisfying 4’ = foA. If B and C are A-algebras, then we can take the tensor
product B®,C of B and C as A-modules and this is again an A-algebra.
That is, we define the product by

(Z bh® ci><z b;@c;.) =Y bb;®c;c),
i J L

and the ring homomorphism 4 —B® C by a—a® l{=1®a). The
fact that the above product is well-defined can easily be seen using the
bilinearity of bb' ® ¢’ with respect to both (b,c) and (b, ¢’). The algebra
B® C contains B® 1 (short for the subset {h® 1[beB} c B® C)and 1® C
as subalgebras, and is generated by these. Note that B® 1 is not necessarily
isomorphic to B.

Example 1. If a is an ideal of 4 and C = A/a, then B®,C = BR,(A4/a)=
B/aB, and the above B® 1 is also equal to B/aB.

Example 2. If B is an A-algebra and A[X] is the polynomial ring over 4
then B®,A[X] can be identified with B[X]. Indeed, A[X] is a free A-
module with basis {X"|v=0,1,2,...}, so that B®,A[X] is also the free
B-module with basis {X*}, and is isomorphic to B[ X] both as an 4-module
and as a ring. Similarly for the polynomial ring in several variables.

Direct limits

A directed set is a partially ordered set A such that for any 4, ueA there
existsve A with A < vand u < v. Forexample, a totally ordered set is directed;
the set of finite subsets of a set S, ordered by inclusion, is a directed set
which is not totally ordered.

Suppose that for each element A of a directed set A we are given a set
M, and whenever 1< u we are given a map f,;:M, — M, satisfying
the conditions

f}.).zla and fvnof;tl:fvl for igﬂgv’

we express all this data as {M; f,,}, and refer to it as a direct system
over A (or indexed by A). If each M ; is an A-module, and each f,; A-linear
we speak of a direct system of A-modules; if each M, is a ring, and each
S .1 a ring homomorphism, a direct system of rings. More generally, we
can define direct systems in any category.

Given two direct systems F ={M,;f,;} and F'={M};f,;}
indexed by the same set, a morphism ¢:% — %' is a system of maps
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{@;:M; — M)} such that
fueoi=0,°f; for A<p

By a map from & to a set X we mean a system {@,} of maps
©i:M; — X satisfying ¢, =¢,°f,; for A<u Now if a map
y:F — M, from & to a set M, has the universal property for maps
from Z to sets, that is, if for any map ¢:% — X there exists a unique
map h:M_, — X such that ¢, = hoy, for all AeA, then M is called the
direct limit of &, or simply the limit of #, and we write M, = hg M,, or
M =lim M. As one sees easily from the definition, a map ¢:F — F’
induces a map lim M, — lim M’,, which in this book we write ¢, or
lim ¢.

The limit of a direct system % = {M;; f,,} always exists. In order to
construct it we do the following: take the disjoint union I1; M, of the M,
and define a relation = by

_ xeM,, yeM ,, and there exists a v

X=ye {with A<v, p<v and f,;(x) = £,,00)-
Then it is easy to see that = is an equivalence relation. We write M, for
the quotient set (LI, M )/ =, that is the set of equivalence classes under =;
then one sees easily that M satisfies the conditions for a direct limit. We
write lim xe M, for the equivalence class of xe M. If # is a direct system
of moduies then M can be given a natural structure of 4-module, and
xlimx is an A-linear map from M ; to M . Similarly for direct systems or
rings.

The above is general theory. In this book the following two theorems are
of particular importance.

Theorem Al. Let A be a ring, N an A-module, and let & = {M;f,;}
be a direct system of 4-modules. Then

lim (M; ®,N) = (lim M) ®, N.

(In other words, tensor product commutes with direct limits.)

Proof. Setlim M, = M _ and im(M,; ® N)= L_. We write ¢ ;:M; —M
for the A-linear map given by x—limx, so that {p,®1} is a map
from the direct system {M,®N; f,;®1} to the A-module M, ® N; this
determines a unique A-linear map h:L, — M @ N. For xeM; and yeN
we have h(lim(x ® y)) =(lim x) ® y. On the other hand, fixing yeN we
can define g; ,:M; — L, by g, ,(x) =lim(x®y), and in the limit we get

gyMy,—L,.

If x,eM, we can write x, = lim x for some 4 and some xeM;. Then
gy(x0) = g1,(x) =1im (x ® y). From this we can see that g,(x ) is bilinear in
x,, and in y, and so defines an A-linear map g:M ,® N — L, such that
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9(x, ®y) =g,(x,). Now it is easy to see that g and h are inverse maps, so
that M QN=L, =

Theorem A2. Suppose that we have three direct systems of A-modules
indexed by the same set A, F'={M};f..}, F={M;; f,} and
F'={M%; [}, and maps {¢,}:F" —F and {y,}:F —F" such
that for every 4,

MI _—)Mi ___ll/"—) MN

is an exact sequence; then the sequence obtained in the limit

lim M) —— lim M, —— lim M7

is also exact. (In other words, direct limit is an exact functor.)
Proof. Write M, for the limit of &, and let y eM_ be such that
Vo (Vo) =0. For some A and yeM; we can write y, =limy, and then
0=y, (limy) =limy,(y), so that for some u > 4 we have f;;(¥(»))=0;
the left-hand side here is equal to ¥ ,(f,(y)), so that by assumption
there is xe M, such that f,;(y) = ¢,(x). Thus y, =lim f,;(y) =lim ¢,(x)
=@, (limx)elm(p,). Also, ¥ ° ¢, =0is obvious. H

Given an 4 module M, write {M,},., for the collection of all finitely
generated submodules of M. We define a partial order on A by letting A < p
if M, = M,; this makes A into a directed set, and we write f,;:M; —
M, for the natural inclusion. Then {M;f,,} is a direct system of A-
modules, the limit of which is the original M, that is M = lﬂ M. Hence
any A-module can be expressed as a direct limit of finitely generated A-
modules.

In a similar way, given any ring 4 and a subring 4, = 4, we can express
A as the direct limit of subrings which are finitely generated over A, as
rings. If we take A, to be the minimal subring of A (that is, the image in
A of 7), then a ring which is finitely generated over 4, is Noetherian, and
hence every ring is a direct limit of Noetherian rings.

Inverse limits

Inverse systems and inverse limits are defined as the dual notions to direct
systems and direct limits, that is by reversing all the arrows in the
definitions. That is, we take a directed set A as indexing set; an inverse
system of sets is the data of a set M, for each AeA, and of a map
SfauiM, —> M, whenever 4 <y, such that

fua=1 and fyof,,=f, for A<u<y;
we write this as {M; f;,}. A morphism between two inverse systems
with the same indexing set, and a map from a set N to an inverse system
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F ={M,;: f;,} are defined dually to the case of direct systems. We say
that M , isaninverse limit, or projective limit of #, and write M, = m M,,
if there is a map ¢ ={¢,]: M, — % which has the property that
for any set X, and any mapy ={y,}:X — &, there exists a unique
map h: X —> M, such that ;= ¢,<h for all 4. To prove the existence of
li_nj M ; we only have to let M, be the following subset of the direct product
I, M;:
M, = {(xDieal A S =2, = @,0x,) ).
If each M, is a module and each ¢,, is a linear map then this M, is a
submodule of the direct product module, and is the inverse limit of modules.
In a similar way, the inverse limit of an inverse system of rings is again
a ring.
Example . Let A={1,2,3,...} and let p be a prime number. Consider
the inverse system of rings
Z/(p)«— Z/(p*) «—Z/(p*) ",
where each arrow is the natural homomorphism. The inverse limit
lim Z/(p")is known as the ring of p-adic integers. Its elements are of the form
(ay,a,,as3,...), with aeZ/(p) and a;=a;_,modp'~!;
addition and multiplication is carried out term-by-term:
(@i, a,,...)+(by,b,y,..)=(a, +b,,a, +b,,..)
(a,a;,..)(by,b,y,...)=(a,b,,a3b,,...).
More generally, if 4 is any ring and I an ideal of A4, the inverse limit
lim A/1" of the inverse system of rings A/l «— A/I? «— ---is called the I-adic
completion of A (see §8).
Taking the inverse limit of an inverse system of modules is a left-exact

functor, but is not an exact functor, so that the analog of Theorem A2
for inverse systems does not hold.

Example. Consider the diagram

U
072 —7-—7Z/(n->0
I
0_>Z-—"—>Z——>Z/(n)—>0
lp lp lp

0—>Z_LZ——>Z/(n)—>O; ]
here p and n are coprime integers, and the arrows marked — are
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multiplication by n. The rows are exact sequences, and each column defines
an inverse system. The left-hand and middle columns have 0 as their
inverse limits, but since every arrow in the right-hand column is an
isomorphism, the inverse limit is isomorphic to Z/n. Thus going to the
inverse limit, we find that 0 — 0 — Z/(n) is exact, but the second arrow
is not surjective.

Exercises to Appendix A. Prove the following propositions.

A.l. Let M and N be A-modules. If the natural map M' QN — M@ N is
injective for every finitely generated submodule M’ = M then the same thing
holds for every submodule M’ = M.

A2. Let A be a ring, and B, C, D (commutative) A-algebras. Then to give a
homomorphism of A-algebras from B®,C to D is the same thing as to
give a pair of homomorphisms of A-algebras B— D and C —D; in
other words, B®, C is the category-theoretical direct product of Band C
in the category of A-algebras.
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Some homological algebra

Let A be a ring; by a map from an A-module into another we mean an
A-linear map.

Complexes
By a complex we mean a sequence

d

dn -
e Ky K K, e

of A-modules and A-linear maps such that d,_;°d,=0 for every n.
This complex is written K,. Since Im(d,, ) = Ker(d,) we can define
H,(K.)=Ker(d,)/Im(d,, ) to be the homology of K, in dimension n. To
say that H,(K.)=0 for all n is to say that K, is exact. We also consider
complexes in which the indices go the other way, --— K" R
K"™!— -+ and for these we write K* for the complex, and H(K")=
Ker(d,)/Im(d, _,) for the cohomology of K* in dimension n. From now on
we often omit the indices, writing d for d,. We call d the differential of the
complex K,.

A morphism f:K.— K. of complexes is a family f=(f,),, of 4-
linear maps f,:K, — K|, satisfying d’° f,= f,_,°d, or in other words
a commutative diagram

i K, — Ky — Ky, — -

fnl f""l f,,_zl

oKy Ky — Ky, e

In an obvious way, [ induces a linear map H,(K.)— H,(K) between
the homology modules in each dimension; this is often written f,,, or
simply f if there is no fear of confusion. If f,g:K. — K_ are two mor-
phisms we say that f and g are homotopic (denoted f ~ g) if for each n
there is a linear map h,: K, — K, such that
So—Gn=dhy+ 1 d.

If this happens then f and g induce the same map H,(K,) — H,(K’) on
homology. Two complexes K. and K, are said to be homotopy equivalent
if there exist morphisms f:K.— K. and g:K. — K. such that gf ~ 1¢

74
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and fg ~ 1., where 1 denotes the identity map K. — K.. Homotopy
equivalent complexes have the same homology.
A sequence of complexes

05K LK. K750
is said to be exact if
0K, 5K, K- 0

is exact for every n. In this case, a connecting homomorphism
o, H(K!)—H,_(K!) is defined as follows: for eH (K”), choose
xeKerd, representing &, and take yeK, such that g(y)= x; then since
g(dy) =0 there is a well-determined zeK;,_, for which f,_,(z)=dy, and
dz =0. The class {e H,_ ,(K') represented by z can easily be seen to depend
only on &, and §, is defined by J,(¢) = (. The following sequence is then
exact:

I H(K) S HK ) -5 Hy(KD) = Hy (K — -

The proof does not require anything new, and is well-known, so that we
omit it; this should be thought of as a fundamental theorem of homology
theory. The above sequence is called the homology long exact sequence
of the short exact sequence 0 » K, — K, — K/ — (.

Double complexes
A double complex of A-modules is a doubly indexed family K..=
{Kpatpgz Of A-modules, with two sets of A-linear maps
d,K,,—K, ,and d;;:K,,— K, for which d'd"=0, d"d" =0
and d'd” =d"d". Given a double complex K., if we set

K,= @ K,y

p+a=n

and define d,:K, — K, _; by

dx=d'x+(—1)Pd"x if xeK
then since dd =0, the {K,} form an ordinary complex with differential d.
The homology of this complex is called the homology of K.., and written
H,(K..}), or simply H,(K).

To treat homology and cohomology in a unified manner, we fix the

p.q’

following convention on raising and lowering indices: K, , = K™%, = K ,7*
=K~ 77% For example, given a double complex {K, 2} with d"K*
—K,_,%and d":K,*— K,"*!, we think of K% as K, _,, and sct

K,= @ K,
p—q=n
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The basic technique for studying the homology of double complexes is
spectral sequences, but we leave this to specialist texts, and only consider
here the extreme cases which we will use later.

We can fix the first index p in K., getting a complex K,,..

d” d”

5K oK, K,  —

pgt1

Similarly, for fixed ¢, d’ defines a complex K.,.

Now suppose that K., satisfies the condition K,, =0 if p or ¢ <0 (a
first quadrant double complex). We set Hy(K,.) = K, o/d"K,, | = X ,; then
d’ induces a map X, — X ,_,, making the X, into a complex X.. Similarly,
d” makes the Hy(K.,) = ¥, into a complex Y. In this notation we have the
following theorem.

Theorem Bl. Suppose that the double complex K.. satisfies the conditions

K,,=0 forporgq<0,
and

H(K,)=0 forq>0andallp.
Then in the above notation we have

H,(K)~H, (X.) foralln.
If in addition we have H,(K.,) =0 for p> 0 and all g then

H,(X.)~H,(K)~H,(Y.).
Sketch proof. Write a;; to denote an element of K;;. We define a map
®:K,— X, by taking a=)>"%,a, ,.,€K, into ¢(a,,)eX,, where
¢:K, o— X, denotes the canonical map. Then ® is a morphism of
complexes, and we prove that it induces an isomorphism on homology.

Let xeX, with d'x=0. We can take g, , such that x = ¢(q, ), and
then since ¢(d'a,,)=d'x=0 there exists a,_,; such that d'a,,=
d’a,_, ;. In turn, since d"(d'a,_, ;) =d'(d"a, -, ;) = d'd'a, , = 0 and since
H,K,_ ,.)=0 there exists a,_,, such that d'a,_,,=d"a,_,,; then
proceeding as before, we can choose g, _; , for 0 <i<nsuch thatd’a,_;; =
d"a,;—1 ;41 for 0<i<n. Then for a suitable choice of +signs, a=
Y5 +a,_; €K,satisfies da = 0 and ®(a) = x, and this proves that ® induces
asurjection H,(K) — H,(X ). The proof that this is also injective is similar.
The second part follows by symmetry from the first. =
Dually, we have the following theorem for cohomology.

Theorem B2. Suppose that the double complex K™ satisfies

KM=0 forporg<0

and
HY(K?)y=0 for gq>0and all p.
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Then making X7 = Ker(d":K?° — K”!) into a complex X' by means
of d’, we have
H'(K) ~ H"(X"),
If in addition H?(K*?) =0 for p > 0 and all ¢ then
H'(Y") ~H(K)~ H"(X"),
where Y" is the complex made from Y%= Ker(d': K1 — K!).
We leave the proof as a suitable exercise for the reader.

Projective and injective modules

An A-module P is said to be projective il it satisfies the following condition:
for any surjection f:M — N and any map g: P —> N, there exists a lifting
h:P — M such that g= fh. A free module is projective, and we can
characterise projective modules as direct summands of free modules.
Indeed, if we express a projective module P as a quotient P = F/G of a
free module F then the identity map P — P has a lifting such that
P — F —— Pistheidentity map,and then F ~ P @® G. Reversing the arrows
and replacing surjection by injection in the definition of projective module,
we get the definition of injective module. There is no dual notion to that
of a frec module, so that injective modules do not have any very simple
characterisation, but we can easily prove the following theorem using
Zorn’s lemma.,

Theorem B3. A necessary and sufficient condition for an A-module
I to be injective is that for any ideal a of 4, and any mapg:a — I, it is
possible to extend ¢ to a map from the whole of 4 to I.

Any A-module can be written as a quotient of a projective module (take
for example a free module). Dually to this, any module can be embedded
into an injective module; the proof of this is a little tricky, and we leave
it to more specialist textbooks. Given a module M, consider a surjection
P,—M from a projective module P, to M; letting K, be the
kernel, we get an exact sequence 0—» K, — Py — M — 0. In the same
way, we construct for K, an exact sequence 0> K, — P, — K; -0
with P, projective, and proceeding as before we get exact sequences
0-K,—P,— K, —»0fori=1,2,... with P, projective. The resulting
complex

pP:+—P, —P, _,— " —P ~—P;-0
is called a projective resolution of M. Since by construction this becomes
an exact sequence on replacing the final P, — 0 by P, M >0, we have
H,(P.)=0forn>0and Ho(P.) = M. In the case that 4is Noetherianand M
is finite, we can take P, to be a free module of finite rank, and then K, is
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again finitely generated. Proceeding in the same way, we see that M has a
projective resolution in which each P, is a finite free module.

Dually, for any A-module M there exists an exact sequence of the form
0->M—Q0°— Q' —+ with each Q" an injective module. The
complex Q: 0— Q% — Q! — -+ is called an injective resolution of M;
it satisfies H(Q")= M and H"(Q") =0 for n > 0.

If /:M— N is a map of A-modules and P., P. are projective
resolutions of M and N then there exists a morphism of complexes '
@:P.—> P, for which fe=¢¢,, that is, a commutative diagram

» P, »P,_, . > Py f L M=0

lwn lw"" lwo lf

"'———’P;——*P:.—x——*""—*P/o—L’N—’O'

The existence of ¢g, @,... can easily be proved successively, using the
fact that the P, are projective and the exactness of the lower sequence. Up
to homotopy, this ¢ is unique, that is if ¢ and  both have the given
property then ¢ ~ . We leave the proof of this to the reader. From this
it follows that any two projective resolutions of M are homotopy equi-
valent. Exactly the same thing holds for injective resolutions.

The Tor functors

Let M and N be A-modules and P., Q. projective resolutions of M
and N, respectively. We write P,® N for the complex obtained by
tensoring P, through with N:

P.QN: PN —P,_ ®N— - —P,®N—> 0.

The complex M ® Q. is constructed similarly. Moreover, we can define a
double complex K, by K,,=P,®,0Q,, with the obvious definitions of
d’, d". Each P, is a direct summand of a free module, and is therefore flat
(that is performing ® P, takes exact sequences into exact sequences). Thus
H/(K,)=H,(P,®Q)=0for n>0, and Hy(K,)=HP,®Q)=PFP,®N.
In exactly the same way, H,(K.))=0forn>0and H(K.))=M ® @,, and
therefore by Theorem Bl H,(P.® N) ~ H (K..) ~ H (M ® Q.). This module
(defined uniquely up to isomorphism) is written TorZ(M,N); it is
independent of the choice of the projective resolutions of M and N chosen,
since if P, and P. are two projective resolutions, we have P,~ P,
and therefore P, @ N ~ P.® N.

The Tor functors have the following properties, (all of which can be
proved directly from the definition):

(1) Torg(M, N) =M ®,N;



Some homological algebra 279

(2) if M is flat then Tor (M, N)=0 for any N and n>0;
(3) TorA(M, N) ~ Tor AN, M);
(4) Tor (M, N)is a covariant functor in both of its entries, and each short
exact sequence 0 > M’ — M — M"” -0 leads to a long exact sequence
-« —Tor(M’, N)— Tor(M, N) —s Tor(M", N)
—sTori | (M',N) — - — Tor{(M", N)
— MRIN—>MRIN—M"RXN-O0.
(5) If {N,,f,.} is a direct system of A-modules then
Tor (M, im N;) = lim Tor (M, N;).

The Ext functors

Let M and N be A-modules. The functor Hom ,(M, — ) is left-exact, that is it
takes an exact sequence 0 - N'— N— N”—0 into an exact sequence
0—-Hom (M,N)—Hom (M, N)—Hom (M,N"); and M is projective
ifand only if Hom 4(M, — )is exact. In addition, Hom ,(—, N) is left-exact, in
the sense that it takes an exact sequence 0 >M' — M —> M" -0 into an
exact sequence 0 —» Hom ,(M"”, N) — Hom ,(M, N} — Hom ,(M’, N), and
N is injective if and only if Hom ,(—, N) is exact.

Choose a projective resolution P, of M and an injective resolution
Q" of N; we define a double complex K* by K”?=Hom ,(P,,Q%), and
construct the two complexes

Hom (M, Q°): 0> Hom ,(M, Q°) — Hom (M, Q') — -
and
Hom (P, N): 0—»Hom Py, N)— Hom (P, N)—---.
Then by Theorem B2 we get
H"(Hom (M, Q")}~ H"(K"")~ H"(Hom (P., N)).
Identifying these three, we write Ext’ (M, N). As with Tor, this does not
depend on the choice of P, and Q.

The main properties of the Ext functors are as follows:

(1) Ext9(M, N)=Hom ,(M, N),

(2) If M is projective, or if N is injective, then Ext” (M, N)=0 for n > 0;

(3) Ext’,(M, N)is a contravariant functor in M and a covariant functor
in N. A short exact sequence 0 >M' —s M — M" -0 gives rise to
a long exact sequence

0—-Hom,(M",N) — Hom (M, N) — Hom ,(M’, N)
— Ext}(M", N) — Ext}(M, N) — Ext}(M", N)
— Ext3(M",N) — -,
and a short exact sequence 0+ N — N — N"—>( gives rise to a
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long exact sequence
0 -Hom,(M, N')— Hom M, N}— Hom (M, N"}) —
— Ext}{(M, N') — Ext}{(M, N) — Ext}(M,N") —
— X (M, N)—
(4) M is projective<Ext}{(M, N)=0 for all N,
and
N is injective<>Ext}(M, Ny =0 for all M.

Projective and injective dimensions

If M is an A-module for which there exists a projective resolution P,
with P, =0 for n > d, but such that P, 0 for any choice of projective
resolution P,, then we say that M has projective dimension d, and write
projdim M = d. If there is no such d then we write projdim M = oc. The
injective dimension injdim M is defined in the same way using injective
resolutions. Clearly projdim M =0 if and only if M is projective, and
injdim M =0 if and only if M is injective.

For a projective resolution P. of M and some i>0, let K; denote
the image of P, — P, _;then--- —P,—P,_, —> - — P,>0isapro-
jective resolution of K;, so that for n>i we have Ext%(M,N)~
Ext " (K;,N). Now il Ext)*'(M,N)y=0 for all N, we have
Ext}(K,,N)= 0 for all N, and hence K, is projective, so that 0 » K, —>
Py —-—Py—0 is also a projective resolution of Py, and
projdim M < d.Conversely, ifprojdim M < dthenobviously Ext’y(M, N) =
0 for n>d.

Similarly, injdim N < d<Ext4* (M, N) = 0 for all M.

Derived functors

As we have just seen, the definition of functors like Tor and Ext can be given
using a resolution of just one entry. For instance, write T for the functor
Hom ,(—,N), and let P, be a projective resolution of a given module
M; construct the complex T(P).---— T(P)e— T(P,_ )¢e— - —
T(Py)«—0, and take the cohomology H"(T(P.)). Setting R"T(M)=
H"(T(P.)) defines a functor R"T in M, which we call the right derived
Sunctor of the left exact functor T. In the present case we have R"T =
Ext%(—,N), but we can in general define the right derived functor of a
left exact contravariant functor in the same way.

The right derived functor is uniquely determined by the following three
properties: (1) R°T =T, (2) if M is projective then R"T(M)=0 for all
n>0, and (3) a short exact sequence 0-» M' — M —> M" -0 gives rise
to a ‘natural’ long exact sequence
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0->TM")— T(M)— T(M)

— R'T(M")— R! T(M)— R T(M’)

—> R? T(M”)——)'“_
(For the meaning of ‘natural’ see a textbook on homological algebra.) For
a left exact covariant functor, we have to replace ‘projective’ by ‘injective’
in the above. For right exact functors we can define a left derived functor
by taking a projective resolution in the covariant case and an injective
resolution in the contravariant case.
Injective hull
Let L be an A-module and M < L a submodule; we say that L is an

essential extension of M if N M # 0 for every non-zero submodule N < L
or equivalently if

b

0 # xeL=there exists ac A such that Q £axeM.

Theorem B4. An A-module M is injective if and only if it has no essential
extensions except M itself.

We leave the proof to the reader. Now suppose that M is a given
A-module, and choose an injective module I with M < I. If we let E be
a maximal element among all essential extensions of M in I then by the
above theorem E is injective. An injective module E such that M c E is
an essential extension is called an injective hull of M, and written E(M)
or E (M), this notion plays an important role in §18. If E and E’ are
injective hulls of M then it is easy to see that there is an isomorphism
@:E "5 E which fixes the elements of M, although ¢ itself is not
necessarily unique.

Let M be an A-module. Take an injective hull I® of M, and set K' =
I°/M. Take an injective hull I' of K?, and set K% = I'/K'. Proceeding in
the same way we obtain an injective resolution 0-/°—1[!' —
1> — - of M, which is called a minimal injective resolution of M.

The following two propositions are both famous and useful; the proofs
are easy.

The five lemma. Let

A—B—C——D—EF
A A
A——B——(C~——D—F

be a commutative diagram of modules with exact rows. Then

(1) f, surjective, and f, and f, injective=-f is injective;
(2) f5 injective, and f, and f, surjective=f; is surjective.
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The snake lemma. Let

A— B— C-0

S

0-A4—B —C

be a commutative diagram of modules with exact rows. Then there exists an
exact sequence of the form

Ker(#) —> Ker(f) — Ker(y) —

Coker(x) — Coker(f) — Coker(y).

Tensor product of complexes

Given two complexes of A-modules K, and L, the tensor product K ®, L is
defined as follows: firstly, set

(K®L),=®p+4=nK,®4L,,
and define the differential d by setting

dx®y)=dx®y+(—1yx®dy
for xeK,and yeL,. In other words, K ® L is the (single) complex obtained
from the double complex W.., where W, ,= K, ® L,.

There is an isomorphism of complexes K® L~ L® K obtained by
sending x® y into (— 1)y ® x for x® yeK,® L,. For a third complex of
A-modules M, the associative law holds:

(K®L)®M =K®(L® M)
Hence the tensor product KV ®---®@ K of a finite number of complexes
can be defined by induction. This is used in §16.

The information on homological algebra given above should be
adequate for the purpose of reading this book. However, a student
intending to become a specialist in algebra or geometry will require rather
more detailed knowledge, including the theory of spectral sequences. We
mention here just three representative references, two books by the
originators of homological algebra and category theory:

H. Cartan and S. Eilenberg, Homological Algebra, Princeton, 1956,

S. Maclane, Homology, Springer, 1963,
together with A. Grothendieck’s paper

Sur quelques points d’algébre homologique, Tohoku Math. J. 9 (1957),
119-221.
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The exterior algebra

(1) Let M and N be modules over a ring A. An r-multilinear map ¢:M" =
M x--x M — N from the direct product of r copies of M is said to

be alternating if ¢(x,,...,x,) =0 whenever any of the elements x,,...,x,
appears more than once. If ¢ is alternating then for any x,,...,x,e M we
have

(p(xl,...,xi_l,xi +Xj,xi+1,...,x]-_1,xi+Xj,Xj+1,...):O,

and expanding out the left-hand side gives
Oxy, . X X )+ QX Xy, Xy ) =0,
In other words, on interchanging two of its entries, ¢ changes sign.

The rth exterior product of M is defined as the module N, having a
universal alternating r-fold multilinear map f,: M" — N, that is a map
satisfying the property that every alternating r-fold multilinear map
f:M"— N factorises as f= heof, for a unique A4-linear map h:N, — N.
We write No= A"M, and use x; A AXx, to denote fu(xy,...,Xx,).
To prove the existence of the exterior product, let N, be the quotient of
the r-fold tensor product M®---® M by the submodule generated by
elements of the form x; ® - @ x® @ x® - ®x,. Then N, satisfies the
above condition. The fact that the exterior product is uniquely determined
up to isomorphism is obvious from the definition.

(2) If M is a free A-module of rank n, with basis e,,...,e, then A'M

) . . ny . .
is zero if r > n, and if r < n is the free A-module of rank ( ) with basis
r
{e;, Ao ne |1 iy <o <i, <n}. (If r>n this is easy; if r <n then the
n . .
<r> elements given above obviously generate A"M, and the fact that they

are linearly independent can also be proved by reducing to the theory of
determinants.)

(3) However, if I = 4 is an ideal, then A?A4 =0, but nevertheless A2l
is not necessarily 0. For example, let k be a field, x and y indeterminates,
and A=k[x,y]; if I[=xA+yA then A?I+#0. Indeed, we can define
@I xI—k=A/l by

(P(f’ g) = [a(fa g)/a(x> y)](x,y)=(0.0)’

~ Oy
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and it is then easy to check that ¢ is alternating and bilinear, with
ol(x,y) =1, so that ¢ #0, and we must have A2l #0.

(4) The operation of taking the exterior product commutes with exten-
sions of scalars. That is, let B be an A-algebra and M an A-module, and
set M®,B = Mjg. Then (A"M)®,B = A"My, where of course A" on the
right-hand side refers to the exterior product of B-modules. For the proof,
according to Appendix A, Formula 11, we have My®y - QpMp=
M®, ®,M)®,B, so that if we let f, be the composite

(MB)'—»@Mf(@M)&B—ﬂ(/r\M)&B,

then f, s an alternating r-fold B-multilinear map. Write v:M — M,
for the natural map x+—>x® 1. Let N be a B-module and ¢:(Mg) — N
be an alternating r-fold B-multilinear map. Then ¢ induces an alternating
r-fold A-multilinear map ¢:M"— N, and therefore an A-linear map
/\'M — N, and finally a B-linear map (/\"'M)®,B — N which we
denote h. Then on v(M") the two maps ¢ and hef, coincide; but M, is
generated over B by w(M), so that ¢ = heof,,. Thus f, has the universal
property, and we can think of (A"M)&®,B as A"Mjp,.

Theorem C1. Let A be an integral domain with field of fractions K, and
let I,,...,1, beideals of A. Set M=1,@ --@I,, and let T be the torsion
submodule of A"M; then (A"™M)/T~1,...1,.. Therefore if J,,...,J, are
idealsof Asuchthat I, @ @I, ~J, ® - @J,wehavel,.. [,~J,...J,
Proof. We have My ~K@--- @K (the direct sum of r copies of K), so
that (A'M)® K = A"Mg~K. The kernel of the natural map
AN'M——(AN"M)® K ~ K is obviously T (since tensoring with K is the
same thing as the localisation with respect to the zero ideal of 4, see §4). In
addition, the image is I,...I,. Indeed, viewing each I; as a submodule of K,
we can assume that the map is

r r

ANL@®®1L)— NK®@®K)=Ke; A~ re,~K.

and since for &=37_,a,e,€) Ke; we have & A - A& =det(a;)
‘e, A Ae, it is clear that the above map has image
Ii--len-ne. B

If A is a Dedekind ring then it is known that I, ®--- @I, ~A4"'®
I,...1, (sec for example {B7], §4, Prop. 24).

Theorem C2. Let A be a ring and M, N A-modules. Then
ANMeN) = @ [(AM)@(AN)].

s+r=r

Proof. (X)—;(M @ N) can be written as a direct sum of all possible r-fold
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tensor products of copies of M and N (with 2" summands). Write L , for the
submodule which is the direct sum of all tensor products involving s copies
of M and t copies of N (with s+ t=r). Thus

@(M@N)z @D L,

s+t=r

For example, when r=2 we have L, ,=MQM, L, ,=(MRIN)P
(N®M)and L, , =N ®N. Now let Q be the submodule of (X);(M @ N)
generated by all elements of the form - @ x® - ®x®:--; we have
0=®[QnL,,]. We see at once that QN L, is the submodule generated
by all elements of the forms -~ @y R - ® y®--- (with either yeM or
yeN), and @ YRR z®7+a®zR PRy ®y (with yeM and zeN).
Thus one sees easily that

;\(M@N) = <(>:§(M@ N))/Q = @D (L,,/QnL,)),

s+t=r
and

s t
L,/L,,nQ~(AM)®(AN). H

(5) Let A be a commutative ring. We say that a (possibly non-commuta-
tive) A-algebra E is a skew-commutative graded algebra if it has a direct
sum decomposition E = (), ,E, as an A-module, such that

() EjE,cEpuy

(i) xy =(—1)"yx for xeE, and yeE;

(iii) x> =0 for xekE,, .

For such an algebra E, a skew-derivation is an A-linear map d:E — E
such that

() dE)<E,_;

(B) d(xy)=(dx)y +(—1)"x(dy) for xeE,, yeE,.

(6) Let A be a ring and M an A-module. We show how to define an
A-bilinear map W:(A?M) x (AIM)— AP 4M. If we define ¢:MP x M4
— APTIM by X1y Xy Vi V) T XA AX AL AT A Y,
then for fixed y,,...,y, this is an alternating p-multilinear map from
MP? to APTIM, so that there is a map ®:(A?M) x M?— APT9M such
that @, y,,...,y,) is linear in ¢ and satisfies ®C,y,,...,y)=
Xy A AX AV A Ay, I E=x A A X, Now for fixed & @ is
alternating and multilinear in y,, ..., y,, defining a bilinear map ‘¥:(A*M)
X (NIM)—> APTIM such that W&y, A A y)=B(E,yy,..., Y, For
ée /\"Mandne NIM we write & A nfor‘l’(é,n), ifE=3 xP A axPand
=Y VPn Ay then Ean=3 , ,xP A AXPAYE A A pP. (It
might be tempting to make the definition directly in terms of this formula,
but the expression of € and # in the above form is non-unique, so that this
requires an awkward proof.) The multiplication A satisfies the associative
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law EA (n A L) =(& A n) AL, so that we can use it to define a product on

o A" M(weset A° M = A4), which becomes an A-algebra, and it is easy
to see that this satisfies the conditions for a skew-commutative algebra. We
write A M for this algebra, and call it the exterior algebra of M.

Given any linear map o: M — A, there exists a unique skew-derivation
d of A M such that d coincides with « on A!M = M. The uniqueness is
clear from the fact that A M is generated as an A- algebra by M: we
must have d(x; A- =3P (=1 X)Xy A AR A A X,
Conversely, the existence follows easily from the fact that the right-hand
side defines an alternating p-fold multilinear map of x,,...,x,.

In particular, let M be a free A-module of rank n with basis e, ...,e,,
so that M = Ae, ®--- @ Ae,. Then taking arbitrary elements c,,...,c,€4,
we can define o: M — A by a(e;) = ¢;, and the skew-derivation of A M
takes the form

P
dle, Ane )= Y (=1 lce, A né A Ae
r=1
This can be identified with the differential operator of the Koszul complex
K.... ,discussed in §16. Thus the Koszul complex can be thought of
as the exterior algebra A (de, @ - @ Ae,) with the skew-derivation defined

by d(ei) =

Exercise to Appendix C

C.1. Let (4,m,k) be alocal ring and M be a finitely generated 4-module. Prove
that min{r|/\"M #0} is equal to the minimal number of generators of M.
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1.2.

1.3.
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L.6.

2.1.

22

23.
24

25.

Solutions and hints for the exercises

(Please be sure to try each exercise on your own before looking at
the solution)

§1.

If ab=1—x with x" =0 then ab(1 + x... + x" )= 1.
Sete;=(0,...,1,...,0)ed, x -+ x 4, (with 1 in the ith place); then since
e;e;=0fori +# j,any prime ideal pof 4, x --* x 4, must contain all but one
of the e;.

(a) Use the fact that rad(4)={xeA|l +ax is a unit of A, YaeAd}.
Counter-example: 4 =7, B = Z/(4); then rad(A4) =(0), rad (B) = 2B.

(b) Let m,,...,m, be the maximal ideals of 4 and I =Kerf. Suppose
Iem;for 1 <i<sandI4¢m,for s <i<r, then the maximal ideals of B
are f(m) for 1 <i<s, and f(m)= B fori>s Now rad(4)=m,...m,,
hence f(rad(A4))=f(n,)...f(m,)=f(m,)...f(m)=rad(B).

The first half is easy; for the second, use Zorn’s lemma.

We can assume that there are no inclusions among P,,..., P,. When r = 2,
take xel — Py, yel — P,; then one of x, y, x + yis not in P; or P,. When
r> 2, we can take xel — (P, u---UP,_,) by induction. Also, since P, is
prime, P, »IP,...P,_,,sotake yeIP,...P,_, — P,; theneither xor x + y
satisfies the condition.

§2.

By NAK there is an eel such that (1 — e)I = 0. One sees easily that then
I=Ie=Aeand e*=e.

If xeann (M/IM) then xM < IM, so that by Theorem 1 there exists yel
such that (x" + y)M =0.

(M + N)/N ~ M/(M ~n N) shows that M is finite, and similarly for N.
(@) IfM ~ A" and P is a maximal ideal of A with k = A/P then M/PM ~ k"
for a field the result is well-known.

{b) The first part is easy by the theory of determinants; the second half
comes from the fact that 4" has n linearly independent elements, but any
n + 1 elements are lincarly dependent.

(¢) Use Theorem 3, (iii).

(@) 1f F and F’ are free modules and a: F — L, f:F* —— N are surjections

287
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3.1
32
34
35.

3.6.
37.

4.5.

4.6.

4.10.

4.11

5.1

Solutions and hints for exercises

then there is a mapy making

0-L— M— N-O
a YT ﬂT
0-F —>F®F —F =0
commute. The assertion follows from this and the snake lemma
(Appendix B).
(b) can be proved similarly.

§3.

Use the fact that 4 is isomorphic to a submodule of (4/1,) -+ D(A4/1,).
Use the previous question.

If 11~ ! = A4 then there exist x;e] and y;e] ~! such that Y "x,y, = 1; then it
follows easily that 1 =) x;A.

If J is a fractional ideal generated by a,/b,,...,a,/b,, with a; and b;
coprime, then J ~ ! is the principal fractional ideal generated by u/v, where
u=lcm(b,,...,b,) and v=h.cf(q,,....q,).

Ker(pW=1,for n=1, 2,... is an ascending chain of ideals of 4.
Choose an ideal I of A which is not finitely generated, and set M = A/,
then by Theorem 2.6, M cannot be of finite presentation.

§4.

Write V(I,) for the complement of U, where I, is an ideal of A. Then
(V) =V(YI) =, so 1€Y1, and therefore a finite sum of I also
contains 1.

If SpecA =V{I)uV(,) with V(I)nV{I,)= then I, +1,=A4 and
I.1, cnil(A4). So 1 =¢, + ¢, withe;el; fori=1,2and (e;e;)"=0.S0 1 =
(ey + e,)*" = e x, + e5x, with x;e 4. So e = e, satisfies e(1 —e) =0.
For peSpec A, if V(p) = V(a)u V(b) then peV(p) gives p o aor p o b, and
hence either V(p) = V{(a) or V(p) = V(b). Conversely, if V(I) is irreducible,
then for x, yeA with xye\/;, from V= V(I + Ax)u V(I + Ay) we have,
say, V= V(I + Ax), and xe\/;; this proves \/I eSpec A.

If there is a closed subset which cannot be so expressed, let ¥ be a minimal
one. Then V must be reducible, but if V=V, UV, with V, s V then, by
minimality, each of V; and V, is a union of a finite number of irreducible
closed set, hence also ¥, a contradiction.

§5.

Set k[X,,...,X,1/p =k[x{,...,x,]; then by Theorem 6, coht p=
tr.deg,k(x). Suppose this is r, and that x,,...,x, is a transcendence basis
of k{x) over k, and set K=Kk(X,...,X,); then k[X,,...,X,], 1s the
localisation of K[ X, ;,-.., X,] at a prime ideal P, with htp = ht P. This
reduces us to proving that if = 0 then ht p = n. In this case x,..., x, are
algebraic over k, and letting p; be the kernel of k[X,,...,X,] —
k[x,,..., %5 Xii1,...,X,] we get a strictly increasing chain 0 cp, = p,
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6.1.
6.2.

6.3.

6.4.

7.2.

7.3.

74.

75.

78.

79.

8.1

Solutions and hints for exercises 289

< «-cp,=p, giving htp>=n, but by the corollary to Theorem 6,
htp <n.

If A is a zero-dimensional Noetherian ring then all prime ideals are
minimal, and by Ex. 4.12, there are only finitely many of these. Let these be
Pi»..-, Py, then since p,...p, = nil (4) there is an » such that (p,...p,)" =0.
For any ideal I and any i, the module I/Ip; is a finite-dimensional vector
space over A/p;, so that (I/Ip;) < oo. It follows easily that [(4) < oo, so that
A is Artinian.

§o.

Ass M = {(0),(3)}. (o s obvious, < from Theorem 3.)

No. Let M be as in the previous question, M, ={(a,a)lacZ} and
M, ={(a,0)lacZ}; then M =M+ M,, but each M;~ 7.

Since xA/x"A >~ 4/x"~ ' 4, there is an exact sequence

0 A/X" 'A— A/x"A — A/xA 0.

Use a primary decomposition of I.

§7.

For beB write b=y/x with x, yeA. Then y=bxexBnA=xA4 (by
Theorem 7.5, (ii)), so be 4.

Write NoM for the A-submodule generated by {m,}; then B®
(M/N)=90,s0o M/N =0.

Set M =[],M;. It is enough to show that I® M — IM is injective
for an ideal I=Y"74,4 of (Theorem 6). Define f:A"— A by

fxy,-.,x) =Y a;x;, and set K=Ker f. Then 0K — 4L s
exact, hence also 0-K®M,—(M,))— M,, and if
Yia;® &iel ® M satisfies Y a;¢; = 0 then writing ¢, for the Ath coordinate
of ¢;,eM we have Y a;; =0 for all 4, and hence (¢4,,...,&,)e K@M,
Now since 4 is Noetherian we can write K = Af, +---+ Af, with §;
=(byj,...,b,)eK = A" for 1 <j<r. Thus we can write &; =) ;b; 1},
with #;,€ M. Since )_,a;b,; =0, setting ;= (;,),€M, we get £, =Y [_, b;;
1;, and Eiai ®&i= EiZjaibij® 17;=0.

Tensor the exact sequence 0— A — 4 with N to get the exact sequence
0->N-5N.

Tensor product does not commute with infinite direct products. If {p;} as
an infinite set of prime numbers then ();p,Z=(0), but ),(p,Z® Q)
=N0=0Q.

If I is an ideal of A then IBn A4 =1, so that givenachain [, = I, < - of
idealsof 4,1,B < I, B — - - eventually terminates, hence so does the given
chain.

§8.
(I +Jy" < I"+ J" so that given x,, X,, ... such that x,, , — x,e(I + J)*"
we can Wwrite X,,; —X,=u, + v, with w,el® and v,eJ" Thus {x,}
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8.2.

8.3.

84.
8.7.

8.8.

8.9.

8.10.

9.1.

9.2.

9.3.

9.4.

9.6.

9.38.
9.10.

Solutions and hints for exercises

converges to x;+ 3 vu;+ Y. Also, I, Jcrad(4), so that
I+ J crad(4), and therefore (),(I + J)' =(0).
If {x,} satisfies x, . ; — x,€J" then there is a limit x for the I-adic topology.
For any i, taking m large enough we get x,, — xel’, so that x, — x = x, —
X + Xy — x€J" + I', and since by Theorem 10, (i) we have ({(J" + I) = J",
we get x, — xeJ", so that x is also a J-adic limit.
Let ad =04 and a=Y 4, with a,ea and £eA. Let T be an ideal of
definition of 4. Take x;e 4 such that x; — {;el4 and set a = a;x;. Then
aea and ad < ad + IaA, so that by NAK, aAd = a4, so a=adn A =aA.
=(e—X)e+eX +eX?+--).
A/m"is Artinian, so that there exists #(n) such that a,,, + m" = a; + m" for
j>t(n). We can assume that t(n) <t{n+ 1) < ---. Supposing that a,,, ¢
m" for some r, then we take g,eq,, —m’, then 4,,,€q,,,,, such that
a,,,—aem’, and proceed in the same way taking a;ea,, such
thata, —a; _,em’~! for i > r. Then lim g, belongs to ﬂ ,a,, but not tont’,
which is a contradiction.
This can be done by following the proof of Theorem 5, and replacing the
use of homogeneous polynomials by multthomogeneous polynomials.
We can assume that 4 is a Noetherian local ring with maximal ideal P.
There is an x # O such that xP = 0, and then since ﬂ,,P” = (0) there exists ¢
such that x¢ P°. Then if I = P¢, I:x = P.
Let m=(X,Y)ck[X,Y] and set A=k[X,Y],; let o(X)=
Y ¥a,X'ek[X] be transcendental over k(X) and set a,=(X""',
Y =3, X).

§9.

B, is integral over A4, so that any maximal ideal of B, lies over pA, and
therefore coincides with PBP. Hence B, is a local ring, and the elements of
B — P are units of B,.

< from the going-up theorem, and > from Theorem 3, (ii).

Replacing 4 and B by A, and B, we can assume p is maximal; then set
k= A/p, so that B/pB is a finite k-module, hence an Artinian ring.

If ax"e A for all n then A[x] is a submodule of the finite A-module a ™' A4; if
A is Noetherian then A[x] is also a finite A-module.

Suppose f= gh with g, he K[ X] monic. Roots of g are roots of f, hence
integral over A, and expressing the coefficients of g in terms of the roots, we
have that the coefficients of g are integral over A; since A is integrally
closed, ge A[ X'], and similarly for h.

By Theorem 3, (ii).

L[ X] is a free module over K[ X7, hence flat; and if L is algebraic over K
then L[ X7 is integral over K[ X]. The first part follows from the previous
two questions, together with Theorem 5.1f f, g have a common factor a{X)
in L[X] then set P = (x(X)), so that ht P = 1 (it can easily be seen that a
non-zero principal prime ideal in a Noetherian integral domain has height
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1). Hence htp < 1. But f, gep, so that ht p=1. There is an irreducible
divisor h of f in p, and p = (h), so h|g.

§10.

Use the previous question and Theorem 7.7.

In the proof of Theorem 4 we can choose p to contain (m,, y)A[v].
Let 0 < p, < p, be a strictly increasing chain of prime ideals of R and let
0+ bep,,aep, — py; thus ba™"eR for all n > 0. Take f=Y Pu; X to be a
root of f>+af+X=0. Then u, =—a"!, and for all i we have
u;ca” T 1R, so that bf (X)eR[X] but f(X)¢R[X]

The first part comes from Theorem 1. For the second part, by §9, Lemma 1
the integral closure of R in K is not the whole of K, and therefore coincides
with R, so R is integrally closed; on the other hand, for xe K — R we have
R[x] = K, hence x " 'eR[x], so that x ! is integral over R and hence in R.
Thus R is a valuation ring. If dim R > 1 then there is a prime ideal p of R
distinct from (0) and from the maximal ideal, and thus R is intermediate
between R and K.

Let v: L* —> G be the additive valuation corresponding to S, and choose
X4,...,X.€Lsuch that v(x,),..., v(x,) represent the different cosets of G’ in
G,and y,,...,y,€S such that their images in k are linearly independent
over k'. Tt follows easily from the previous question that the ef elements
x;y; are linearly independent over K.

If S = S, then the residue field k, of S; contains a valuation ring 4 # k,
such that S is the composite of S; and 4. We have k < 4 < k, but by the
previous question k, is an algebraic extension field of k, hence integral
over A. But A is integrally closed, therefore A = k,, a contradiction.

§11.

Let B be a valuation ring of K dominating A, and G its value group. Then
for xemy we have /aemy, so that G has no minimal element. Also it is
easy to see that some multiple of () belongs to ®(K*), so that G is
Archimedean.

If B is a valuation ring of L dominating 4 and G its value group, set
H =yp(K*)and e = [G:H]. Then xe G=>exe H. Hence G is isomorphic to a
subgroup of H, and G ~ Z.

Just use Forster’s theorem (5.7).

By Ex. 9.7, A=2[\/10]=Z[X]/(X*—10). Then A/3A~Z[X]/3,
X —1)=(Z3Z7)[X]/(X — 1)(X + 1), sothat P=(3,,/10— 1) is a prime
ideal of A. This is not principal, since if P = () with a =a + b\/10, then
one and sees easily that the norm N{a) = a> — 10b* would have to be + 3,
but this is impossible since the congruence ¢ = + 3mod 5 has no solution.
Let P,,..., P, be the maximal ideals of 4; choose an element xe P, such
that x¢ P2UP, U UP,. Then a4 = P,, and similarly each of the prime
ideals is principal. Thus by Theorem 6 any ideal is principal. (Of course
this also follows from Theorem 5.8.)
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§12.

Suppose that L is normal over K, and let G = Aut,{L). Let S, and S be
valuation rings of L dominating R, and let S5, §,,..., S, be the conjugates
of §; by elements of G, and A =8, n---NS,NS. If S # S, for any i then by
Ex. 10.9, there are no inclustons among S,...,S,, S, and we can apply
Theorem 2. Letting n, n; be the maximal ideals of S, §;, and setting
nnA=p, m;,nA=p, we have p,...p,¢p, so that we can choose
xep, N NP, with x¢p. Then x¢n, but since xe(n,) "for all age@G,all the
conjugates of x over K belong to n,, and the coefficients of the minimal
polynomial of x over K belong to n, n K =rad(R). Thus it follows easily
that xen, a contradiction.

By Ex. 10.3, R is the intersection of all valuation rings of L dominating R.
Ex. 10.9 can easily be extended to the infinite case, so that the second part
follows from the first. For the first part, reduce to the finite case and use the
previous question and Theorem 2.

Let 2 be the set of height 1 prime ideals of 4, and for pe# set I =a A,.
Then xel<>xI ™! = A, for all peP<>xea,A for all pe. Hence I is the
intersection of I, n A taken over the finitely many pe# such that I, # A4,.

§13.

Let PeAss(A) besuchthatht P> 1,and let p,,...,p, be the prime divisors
of (a). If P ¢ p, for all i, then there exists xe P such that (a):x = (a). Thisis a
contradiction, since x is a zero-divisor, but if xy =0 then ye ﬂ,,a"A.
Hence P + (a) = p; for some i, and then htp, < 2.

(i) is easy. (i) The homogeneous elements of P are nilpotent mod Q*,
hence so are all elements of P. Now we show that if f¢P, g¢Q* then
J9¢Q* Let f=fi + 4+ f,.g=g, + - + g, with [; and g; homogeneous,
and deg f, <degf, <---,degg, <degyg, < -*; we work by induction on
r+ s. If r = s = 1 there is nothing to prove. Also, since we can assume that
g,¢0* we have g,¢Q. If f,¢P then f,g,¢0* Next, suppose f,eP. If
f19€0* then £geQ*,since (f, + - + f,) geQ*. 1f f,€Q* then [ g¢Q*
and f{*1geQ* for some t = 1 (since f1eQ* for n>0). Replacing g by

g reduces to the case f,geQ*, so that ffg¢Q*.

First half: let S be the multiplicative set made up of homogeneous elements
of R notin P; then Rg/P* Ry can be viewed as the localisation of R/P* with
respect to all non-zero homogeneous elements, and by the previous
question this is ~ K[X, X '], which is a one-dimensional ring. Second
half: proof by induction on ht P = n; take a prime ideal @ — P with htQ =
n— 1.If @ s P* then Q is inhomogeneous, Q* = P* and ht(P/Q*) > 2, so
by the first half, P* s Q* hence ht P* > htQ* + 1 =n—1.

§14.

LetpeSpec A, f,gem — p,and r = dim A/p. If r = { then p A, is a maximal
ideal. Suppose that r>1. We can choose x,,...,x,em such that
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ht(p, f,X5,...,X;)/p =ht(p,g,X,,...,x;)/p =ifor 2 <i<r. Then any mini-
mal prime divisor P of (p, x,,...,x,) satisfies dim A/P =1, f¢ P and g¢P,
so g¢P A em-Spec(A,).

§15.

Set Z=X/Y so that X =YZ, B=k[Y,Z]>2A=k[YZ,Y], and pB=
YB. So B/pB ~k[Z] and dim Bp/pBp=1. Now let p'=(X —aY)A for
0 # aek; then any height 1 prime ideal of B containing X —aY=
Y(Z —a)mustbe YBor(Z — «)B,butsince YBnA #p'and(Z —o)B¢ P
there does not exist any prime ideal of B contained in P and lying over p’.
No. Set f=XY— 1. Then fB is a prime ideal of B, and fBn 4 = (0). Since
fB+ XB=B there does not exist any prime ideal of B containing
[B and lying over XA. Note that the fibres of A — B are all one-
dimensional.

§16.

< is easy; for > consider a system of parameters of M".

Hom (A/a, A/b) =0 by Theorem 9.

For PeAss(A/I), grade P > kisclear from P o I. If grade P > k then by Ex.
16.2, I:P = I, which is a contradiction.

Suppose that (4, m) is local; then if meAss(A4) we have depth A =0, but if
ht P> 0 and P¢Ass(A) then depth Ap > 0, so that M = A4 gives a counter-
example. For example, A =k[X,Y,Z]x.y.2/(X,Y,Z)>n(Z) and P=
(x,2)A satisfy these conditions.

Let x=(x4,...,x,) be a maximal M-sequence in m, and set M' =
M/Zx,-M; then there exists 0 3 £e M’ such that m¢ =0. Thus mB¢ =0,
but n* « mB so n*¢ =0 and neAssg(M"), therefore x is also a maximal M-
sequence in n.

(iy Forr = 1 the proofis similar to Theorem 14.3. Ifr > 1, applying the case
r =1 gives that (a,,...,a, ) is prime, and we can then use induction. (ii)
For any QeAss(A) we have QA €Ass(A,); if we had P = @ then by (i), 4,
is an integral domain, a contradiction. Hence P ¢ Q. Therefore using
Ex. 16.8, we see that P can be generated by an 4-sequence. For a counter-
example let A=k[x,y,z]=k[X,Y,ZJ(X(1—-YZ));, P=(x,yz)=
(v,2) = (y — y*z,2) is a prime ideal of height 2, but y — y?z is a zero-divisor
in A.

§17.

(b) Let k be a field; then A =k[X,Y]/(XY, Y?)is a one-dimensional ring
which is not CM.

x3,y% is an A-sequence, hence also an R-sequence, so that R is CM. The
ring k[x* x3y,xy3,y*] is not CM.

By localisation we need only consider the case of an integral domain, and
it then follows from Theorem 11.5, (i).
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We can assume that A4 is a local ring. Since A/J is CM we have dim A/
J=depth A/J =r, and if we set k for the residue class field of A then
Exti(k, 4/J)=0 for i<r. Using the exact sequence 0-
JUY Y — 4/0° Y — A4/J¥ =0 and the fact that J*/J** ! is isomorphic
to a direct sum of a number of copies of A/J we get by induction that
Exti,(k, A/JJ"Y=0fori<r.
(i) Let x,,..., x, be a maximal A-sequence in P, and extend to a maximal 4-
sequence in M, Xy,...,X,, Vi,..., V.. There exists QeAss, (4/(x,...,X,))
containing P, so that by Theorem 2, dimA/P > dim A/Q > depth
Aflxys..., %) =s.

(i) dim A —htP >dim(A/P)> depth A —depth(P,A)>depth 4 —
depth 4,.

§18.

Using Ex. 16.1, we see that 4 is CM<>B is CM. Assuming CM, we need
only use condition (5') of Theorem 1 as a criterion.

Given a prime ideal P of A[ X], by localising A at P n A and factoring out
by a system of parameters we reduce to proving that if (4, m, k) is a zero-
dimensional Gorenstein local ring, and P a prime ideal of A[ X] such that
PnA=m then B= A[X], is Gorenstein. Then P is generated by m
together with a monic polynomial f(X), and the image of f in k[X] is
irreducible. Since fis B-regular, if we set C = B/(f) then the maximal ideal
of CismC,and C ~ A[ X]/(f); this is a free A-module of finite rank, so that
Hom(C/mC, C) =Hom ,(k, A)®,C (by Ex. 7.7} ~ C/mC. So C is Goren-
stein, therefore B also.

R/, %) = k[x3,y3, x2y,xy*1/(x3, y*) ~ k[U,V]/(U%L V2, UV). In this
ring (0) is not irreducible, so that R is not Gorenstein.

For 0 # ac A, the ideal a4 is ~ A/I with I # A, so there exists a non-zero
map@:ad — k; viewed as amapaAd — E, thisextendsto A — E, so that
0#Img caE.

We can consider M as a submodule of E=FE (k). By faithfulness,
A cHom (M, M)cHom,(M,E). But 0—Hom/(E/M,E)—
Hom ,(E, E)= A — Hom (M, E)—0 is exact, hence E/M =0.

§19.

If0»P,—--— P,— M - 0is an exact sequence and each P, is finite
and projective, and if P,@ A"~ A™, then -+ — P, — P, QA" — P,
@ A" — M — 0 is again exact, with P, @ A" free. Proceeding in the same
way, adding a free module to P, at each stage, we get an FFR 0— L, .
—L,—— Ly— M =0,

For every maximal ideal m of 4, since the A-module 4/m hasan FFR, also
the A -module A, /mA_hasan FFR, sothat the projective dimension over
A is finite. Thus A_ is a regular local ring,
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§20.

Use Theorem 5 and Ex. 8.3.
This follows from Theorem 1. If an ideal I is locally principal it is finitely
generated, and principal by Theorem 5.8.

§21.

For PeSpec R with P > I'set P/I = p; then A4_ is c.i.«>1,,is generated by an
Rp-sequence <=>(I/I 2)p is free over A,. Now I/I%is a finite A-module, so that
by Theorem 4.10, {peSpec A |(I/I*), is free} is an open subset of Spec A.
We can assume that 4 is complete. Then 4 = R/I with R regular and
dim R =dim 4 + 1. Now ht] = 1 and A4 is a CM ring, so that all the prime
divisors of I have height 1. Since R is a UFD, I is principal.
A=k[x,y,z] =k +kx +ky+kz + kx?, with x>=y*=z? and xy=yz =
zx =0. Therefore 0:m = kx2, and A is a zero-dimensional Gorenstein
ring. Set [ =(X*—Y? Y?—Z? XY, YZ,ZX) and M =(X,Y,Z), then
I/MI — M?/M?* has five-dimensional image, so that at Jeast five elements
are needed to generate 1.

§22.

Algebraic independence comes from Theorem 16.2, (i). To prove flatness,
setting =3 x;C and using Theorem 3, we reduce to proving that
Tor§(k, A) = 0. Since x is a C-sequence, the Koszul complex L, = K (x, C)
constructed from C and x is a free resolution of the C-module k = C/I, and
Tor§(k, A)= H,(L, ® -A). However, L ® ¢ A is just the Koszul complex
constructed from A4 and x, and since x is an 4A-sequence, H, (L, ® A) =0.
We need only show that Tor{(k,M)=0. By Lemma 2 of §18,
Tor{(k, M) = Tor{/*4(k, M/xM), but by assumption the right-hand side
is 0.

§24.

Use 019" — A/I'"Y — A/I'50 to deduce that Ass(A/IY)=
Ass(A/I) for all i.

By Theorem 3, it is enough to show that for a prime ideal p of A, CM(A/p)
contains a non-empty open. Let P be the inverse image of p in R, so that
Afp=R/P.Ifx,,...,x,ePare chosen to form a system of parameters of R,
then since R, is CM, they form an Rp-sequence. Thus passing to a smaller
neighbourhood of P, we can assume (i) P is the unique minimal prime
divisor of (x) = (x,,..., x,)R, and (ii) x is an R-sequence. Now replacing R
by R/(x), we can assume that P is nilpotent; moreover, we can take P'/Pi*1
to be free R/P-modules. Now using the previous question it follows easily
that R is CM implies R/P is CM.

After a preliminary reduction as in the previous question, use the proof of
Theorem 6.
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§25.

If xy =0 we prove that ye[)x"4; suppose that yex" 4, and set y = x"z;
then 0=D(x""'z) =(n+ 1)x"z + x"* 1 Dz, and yex""'A.

01— A®,A— A—0is a split exact sequence, so that 0 1 ® Kk’
— A AR K =A ® A — A'>0 is also exact, and hence Q. ,
=(IQKWIRK) =(I/I")@ k' =Q,, ®,k'. For Ag, use the fact that Ag
is O-etale over A and Theorem 1.

See Theorem 27.3.

§26.

(i) Let xe K n K'; then 1, aeK are linearly dependent over K', hence also
over k,so ack. (ii) Assume that «,, . .., o,eK are linearly independent over
K, and that Y o, =0 with £ek'(K’);, we show that & =0. Clearing
denominators, we can assume that &;ek’[K']. Choosing a basis {w,} of K’
over k we can write &; =Y ¢;;0, with ¢;;ek’. Then since Y ; ;¢,;2,0; =0 we
get Y ;c;;0, =0, therefore ¢;;=0 for all i,j.

It is enough to show that K((T)) and LP((T?)) are linearly disjoint over
KP((TP)). Assume that w,(T),...,w(T)eK({T)) are linearly independent
over KP((T?)), and that ¥’ ¢,m; =0 with ¢, IP((T?)), we show that ¢, =0
for all i. Clearing denominators, we can assume that w,eK{T] and
;e P[T?]. Letting {&,} be a basis of L over K we can in a unique way
write @, = Y E8¢,,(T?) with ¢,(T?)eK?[T*]. Here Y &5, is in general
an infinite sum, but only a finite number of terms appear in the sum for the
coefficient of some monomial in the T’s, so that the sum is meaningful.
Then Y, &3 ;0,,(TP)w,(T)) =0, so that Y, ¢;,(T?)e; = 0 for all 4, so
@; =0forall i, 4.

§28.

Let N be a B-module satisfying m’N = 0,and D: B —- N a derivation over
A; then D induces a derivation D:By=B/mB—— N/mN. If By is 0-
unramified over k then D =0, so that D(B) = mN. Proceeding as before
gives D(B)c m2N, ... so that D =0. The statement about etale is just
putting together those for smooth and unramified.

Since some DeDer(k) with Da # 0 can be extended to a derivation of A,
ag¢ AP.If k' were a coefficient field containing k then we would have to have
aek'’? = AP, Also, A is 0-smooth over k because k[ X] is.

§29.

Suppose that C = R[[t] with Ra DVR; if we let u be a uniformising element
of R then pR is a power of R, so that pC has the single prime divisor uC.
However, in fact, in our case C/pC = (B/pB)[X]/(X(X + y)), so that pC
has the two prime divisors (p,x) and (p,x + y).

R is pR-etale over Z, (see Ex. 28.1).
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§30.

¢ is the composite of E,:A— A[t] and of the mapA[:]— A4
obtained by substituting — x for z. Since (x) = 0 we have x4 — Ker ¢. For
any ac A we can write ¢(a) = a + xb, so that @(¢(a)) = ¢(a), and therefore
CnxA=(0)and A = C + x4, therefore A = C[x]. Now E{(x) = x + ¢, and
it is easy to see that this is a non-zero-divisor of A{¢], so that x is a non-
zero-divisor of 4. If¢,x" + ¢, X" ! 4 -+ = 0 with ¢;e C then dividing by x"
we get ¢,eCnxA =(0), so that x is analytically independent over C.
No. If A is 0-smooth over k’ then so is the field of fractions L of A, so L/k’ is
separable, hence also k/k’, and this is not the case.

(1)=>(3) is easy using Theorem 28.7. If [k:k"] = oo then there are counter-
examples to (3)=(1) (see [G1], (22.7.7).
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discriminant, 198 formally catenary ring, 252

divisor class group, 165 formally equidimensional, 251

divisorial fractional ideal, 91 Forster ~Swan theorem, 35

domain, see integral domain fractional ideal, 19, 80, 166

dominates, 72 free module, 9, 13, 51

double complex, 275 stably, 161, 163

DVR, see discrete valuation ring
G-ring (Grothendieck ring), 256

Eakin-Nagata theorem, 18 generic fibre, 116
Eisenstein extension, 229 generic point, 36
embedded prime, 39, 42, 136 geometrically regular, 219, 255
embedding dimension, 104, 156, 169 global dimension, 155, 182
equal characteristic, 215, 261 going-down theorem, 45, 67, 116
equicharacteristic, 215, 261 going-up theorem, 67, 116
equidimensional, 250 Gorenstein ring, xi, 139, 142, 145, 181,
equidimensional, formally, 251 189
essential extension, 149, 281 grade, 131
essentially of finite type, 232 graded module, 92, 177
(0-) etale, 193, 204 graded ring, 92, 101
(I-) etale, 214 greatest common divisor (g.c.d.), 163
Euler number, 111, 159
exact functor, 26, 268 height (of a prime ideal), 20, 30, 100
exact sequence, 12, 45, 51, 53, 268 Hensel ring, x
excellent ring, xi, 260 Hensel's lemma, S8
Ext, 53, 129, 139, 154, 185, 189, 279 higher derivation HS,(4), 207
extended ideal, 21 Hilbert function, 92, 95, 101
extension Hilbert Nulistellensatz, 33
essential, 281 Hilbert polynomial, 95, 138
of a ring by a module, 191 Hilbert ring, see Jacobson ring
of scalars, 268, 284 Hilbert series, 94
trivial or split, 191 Hochschild formula, 190, 197
exterior algebra, 169, 286 Hom, 6, 52, 129, 140, 154, 189
exterior product, 283 homogeneous element, 92
homogeneous ideal, submodule, 92, 101
factorial ring see unique factorisation homology, 127, 170, 274
domain
faithful A-module, 6 I-adic completion, 57, 272
faithfully flat, 45, 47 [-adic topology, 57
fibre [-adically ideal-separated, 174
closed, 116 ideal, ix, 1
generic, 116 contracted, 21
over a prime, 47, 116, 178 extended, 21
field, 2, 106 fractional, 19, 80
filtration, 93 maximal, 2
finite free resalution (FFR), 159 of definition, 62, 97
finite length, 12, 15, 94 parameter, 138
finite module, 7, 15, 26 perfect, 132
finite presentation, module of, 12, 14, 19, primary, 21
52 prime, 2
finite type, essentially of, 232 proper, 1

finitely gencrated ideal, 5, 15, 50, 94, 271 imperfection module, 205
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indecomposable module, 145
(p-) independent, 202
independent in the sense of Lech, 160
injective dimension, 139, 155, 280
injective hull, 145, 280
injective module, 144, 277
injective resolution, 144, 185, 278
integral, 64

closure, ix, 64, 73, 261

domain, 2

element, almost, 69

extension, 45, 64
integrally closed domain, 64, 73
inverse limit, 55, 271
inverse system, 55, 271
invertible fractional ideal, 19, 80, 167
irreducible closed set, 29, 39
irreducible element, 5, 162
irreducible submodule, ideal, 40, 142
isolated associated prime, 39
iterative higher derivation, 209

Jacobson radical, see radical

Jacobson ring, 34, 115

Jacobian criterion, 233, 237, 239, 244
Jacobian condition, weak (WJ), 239, 259

Koszul complex, 111, 127, 151, 156, 169,
286

Krull-Akizuki theorem, 84

Krull dimension, 30

Krull intersection theorem, 60

Krull ring, x, 86, 165

least common multiple (l.c.m.), 163
Lech’s lemma, 110

length, 12, 84, 94

lies over, 25, 66

lifting, 191

linear topology, 55, 93

linearly disjoint subfields, 200
local homomorphism, 48

local property, 26

local ring, 3

localisation, x, 20, 48, 63, 65, 157

Matlis theory, 144

maximal condition see ascending chain
condition

maximal ideal, 2, 24

maximal spectrum m-Spec A, 24

minimal associated prime, 40

minimal basis, 8

minimal condition, see descending chain
condition

minimal free resolution, 153

minimal injective resolution, 281

module, 7, 268
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finite, 7

imperfection, 205

injective, 144, 277

of differentials, 190, 192

of finite presentation, 12

projective, 277
multiplicative set, 2, 20

saturation of, 23
multiplicative valuations, 71
multiplicity, x, 92, 104, 108, 138

Nagata criterion for openness (NC), 186,187

Nagata ring, ix, 264
NAK (Nakayama’s lemma), 8
neat see unramified
nilpotent element, 1, 3, 6, 21
nilradical nil(4), 3
Noether normalisation, 262
Noetherian ring, ix, 14, 17, 22, 37, 84
Noetherian graded ring, 94
Noetherian module, 14
Noetherian topological space, 29
normal ring, 64, 82, 88, 157, 183
normally flat, 188
null-form, 107, 112

ideal of, 112
Nullstellensatz, 33
number of generators of a module, 35, 170

open loci, 172, 186, 237, 245, 260
ordered group, 75

Archimedean, 76

of rank 1,77

p-ring, 223

parameter ideal, 138

parameters, system of, 104

perfect ideal, 132

perfect field, 200

Picard group of a ring Pic(4), 166

polynomial ring A[ X1, 4, 16, 31, 58, 89,
117, 157, 161, 168, 177, 181, 192, 269

primary components (of a submodule), 41

primary decomposition, ix, 37, 41

primary ideal, 21

primary submodule, 39, 40

prime divisor (of an ideal), 38, 100

prime element, 5

prime ideal, 2

primitive polynomial, 168

principal ideal, 5, 161, 164

theorem, 92, 100, 162

projective dimension, 155, 182, 280

projective module, 9, 52, 80, 161, 166, 277

projective resolution, 51, 158, 277

proper ideal, 1

Priifer domain, 86

pure submodule, 53
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quasi-coefficient field, 215

quasi-coefficient ring, 225

quasi-excellent ring, 260

quasi-regular sequence, 124

quasi-unmixed see formally
equidimensional

quotient of regular local ring, 169, 171

radical (of an ideal), 3
radical rad(A4), Jacobson, 3, 8, 57, 98
ramified local ring, 228
rank (of a module), 84, 154, 159, 163, 166
rank [, ordered group of, 77
rational rank (of ordered group), 77
reduced ring, 3
reduction (of an ideal), 112
Rees ring, 120
(M-) regular element, 38, 123
regular homomorphism, 256
regular local ring, x, 105, 138, 153, 156,
163, 187, 236
regular ring, 157
regular ring, geometrically, 219, 255
regular sequence, x, 123, 188
quasi-, 124
regular system of parameters, 105
residue field, 3, 23
resolution of singularities, x, 12, 74, 92, 188
rigidity conjecture, 154
ring of fractions, 20, 48

Samuel function, 12, 92, 97, 101, 138

Samuel function of a regular local ring,
106

saturated (chain of prime ideals), 31

saturation (of a multiplicative set), 23

secondary module, 42

secondary representation, 43

semigroup, 92

semilocal ring, 3, 16, 62, 97, 169

separable field extension, 195, 198

separable algebra, 198

separably generated, 199

separated module, 55

separated, /-adically ideal-, 174

separating transcendence basis, 199

(M-) sequence, 123

Serre’s criterion for normality, 183

simple module, 12

skew-commutative graded algebra, 285

skew derivation, 285

smooth, 193

(0-) smooth, 193, 204, 233

(I-) smooth, 213, 217, 233

(I-) smooth w.r.t. k, 217

spectrum of a ring Spec A, 20, 24, 35, 48

split cocycle, 221

split exact sequence, 268

split extension, 191

stably free module, 161, 163

structure theorem for complete local rings,
x, 190, 223, 265

support (of a module) Supp (M), 25, 39, 48,
99

symbolic power (of a prime ideal), 29, 88
system of parameters, 104
regular, 105

tensor product, 26, 45, 53, 266
of complexes, 127, 281
topology, 55
Tor, 26, 50, 53, 140, 154, 170, 182, 187, 278
total ring of fractions, 21
transcendence degree tr. deg, A4, 32, 118

unequal characteristic, 215

uniformising element (of DVR), 79

unique factorisation domain (UFD), §, 65,
161

unique factorisation into primes in a
Dedekind ring, 82

unit, 1

universally catenary ring, 118, 139, 251

unmixed, 136, 139

unmixedness theorem, 136

(0-) unramified, 193

(/-) unramified, 214

unramified local ring, 228

valuation, 75
additive, 75
discrete, 78

valuation ring, x, 71
composite of, 72

value group of a valuation, 75

weak Jacobian condition (WJ), 239, 259

Zariski Riemann surface, 73
Zariski ring, 62

Zariski topology, 25, 29, 36, 74
zero-divisor, 38



